CDC CHerfarpecison co. lt.

Will1/Will1-B Servo Drive

Fieldbus

Programming Manual

Revision 1.0

Table of Contents

Table of Contents 2

1. About this manual 7
1.1 Revision History 7
1.2 Copyright Notice 7
1.3 Trademarks 7
1.4 Disclaimer 8
1.5 Contact Us 9
2. Introduction 10
2.1 Abbreviations and terms 10
2.2 Operation modes 11
2.3 Standard Servo Drive Objects (0x60nn) 12
2.4 Format of Object Dictionary 20
3. General Entries 21
3.1 Drive Error 21
Object 0x6007: Abort connection option code. 21
Object 0x603F: Error code 22
3.2 Drive Data 23
Object 0x6502: Supported drive modes 23
4. Device Control 25
4.1 General 25
4.2 Finite State M achine and States 25
4.2.1 Diagram of Power Drive System Finite State M achine 26
4.2.2 Description of the states of finite state machine 27
4.2.3 Descriptions of the transitions of finite state machine 28
4.3 Detailed Objects specifications 30
4.3.1 Object 0x6040: Controlword 31
4.3.2 Object 0x6041: Statusword 33
4.3.3 Object 0x605A: Quick stop option code 37
4.3.4 Object 0x605B: Shutdown option code 38
4.3.5 Object 0x605C: Disable operation option code 39
4.3.6 Object 0x605D: Halt option code 40
4.3.7 Object 0x605E: Fault reaction option code 41
5. M odes of Operation 42
5.1 Functional Description 42
5.2 Objects. 43
Object 0x6060: M odes of operation 43
Object 0x6061: M odes of operation display 45
6. Profile Position M ode 46
6.1 General information 46
6.2 Structure of Controlword and Statusword 47
6.2.1 Controlword of the Profile Position M ode. 47
6.2.2 Statusword of the Profile Position M ode 48
6.3 Functional Descriptions 49
6.3.1 General 49
6.3.2 Single Set-point \& Set of Set-point 51
6.3.3 Buffered Set-point 53
6.4 Objects. 55
Object 0x607A: Target position 55
Object 0x607B: Position range limit 56
Object 0x607D: Software position limit. 58
Object 0x607F: Max profile velocity 59
Object 0x6080: M ax motor speed 60
Object 0x6081: Profile velocity 61
Object 0x6083: Profile acceleration 62
Object 0x6084: Profile deceleration 63
Object 0x6085: Quick stop deceleration 64
7. Position Control Function 65
7.1 General information 65
7.2 Objects 67
Object 0x6062: Position demand value 67
Object 0x6063: Position actual internal value 68
Object 0x6064: Position actual value 69
Object 0x6065: Following error window 70
Object 0x6066: Following error time out 71
Object 0x6067: Position window 72
Object 0x6068: Position window time 74
Object 0x60C2: Interpolation time period 75
Object 0x60F4: Following error actual value 76
Object 0x60FC: Position demand internal value 77
8. Homing M ode 78
8.1 General Information 78
8.2 Structure of Controlword and Statusword 79
8.2.1 Controlword of Homing Mode 79
8.2.2 Statusword of Homing M ode 80
8.3 Object 81
Object 0x607C: Home offset 81
Object 0x6098: Homing method 83
Object 0x60E3: Supported homing methods 84
Object 0x6099: Homing speeds 85
Object 0x609A: Homing acceleration 86
Object 0x3293: Hard stop current 87
Object 0x3294: Hard stop period 88
8.4 Functional Description 89
8.5 CiA 402 Homing M ethods 90
8.5.1 By Limit Switch and Index Pulse 90
8.5.2 By Home Switch and Index Pulse 93
8.5.3 By Home Switch, Index Pulse, and Limit Switch 96
8.5.4 M ethod 15 to 16: Reserved 104
8.5.5 By Limit Switch 104
8.5.6 By Rising/Falling Edge of Home Switch 106
8.5.7 By Home Switch and Limit Switch 110
8.5.8 M ethod 31 to 32: Reserved 117
8.5.9 By First Pulse 118
8.5.10 By Current Position 119
8.6 cpc Homing M ethods 120
8.6.1 By Hard Stop 120
8.6.2 By Hard Stop and Index 122
8.6.3 By the middle of Hard Stop 124
8.6.4 By the middle of Limit Switch 126
8.6.5 By the middle of Home Switch 128
9. Touch Probe Functionality 133
9.1 Object 133
Object 0x60B8: Touch probe function 133
Object 0x60B9: Touch probe status 135
Object 0x60BA: Touch probe 1 positive edge 137
Object 0x60BB: Touch probe 1 negative edge 138
Object 0x60BC: Touch probe 2 positive edge 139
Object 0x60BD: Touch probe 2 negative edge 140
9.2 Touch Probe Edge Counter for Continuous M ode 141
9.2.1 General information 141
9.2.2 Timing Diagram—Example of Touch Probe Edge Counter for Continuous Mode 142
9.2.3 Object 144
10. Profile Velocity M ode 148
10.1 General Information 148
10.2 Structure of Controlword and Statusword 149
10.2.1 Controlword of the Profile Velocity M ode 149
10.2.2 Statusword of the Profile Velocity M ode. 150
10.3 Functional Description 151
10.4 Objects 152
Object 0x606B: Velocity demand value 152
Object 0x606C: Velocity actual value 153
Object 0x606D: Velocity window 154
Object 0x606E: Velocity window time 155
Object 0x606F: Velocity threshold 156
Object 0x6070: Velocity threshold time 157
11. Profile Torque M ode 158
11.1 General Information 158
11.2 Structure of Controlword and Statusword 159
11.2.1 Controlword of the Profile Torque M ode. 159
11.2.2 Statusword of the Profile Torque M ode. 160
11.3 Objects 161
Object 0x6071: Target torque 161
Object 0x6073: M ax current 162
Object 0x6074: Torque demand 163
Object 0x6075: M otor rated current 164
Object 0x6076: M otor rated torque 165
Object 0x6077: Torque actual value 166
Object 0x6078: Current actual value 167
Object 0x6079: DC link circuit voltage 168
Object 0x6087: Torque slope. 169
12. Cyclic Synchronous Position M ode 170
12.1 General Information 170
12.2 Functional Description 171
12.3 Structure of Controlword and Statusword 173
12.3.1 Statusword of the Cyclic Synchronous Position M ode 173
12.4 Object 174
Object 0x60B0: Position offset 174
Object 0x60B1: Velocity offset 175
Object 0x60B2: Torque offset 176
13. Cyclic Synchronous Velocity M ode 177
13.1 General Information 177
13.2 Functional Description 179
13.3 Structure of Controlword and Statusword 180
13.3.1 Statusword of the Cyclic Synchronous Velocity M ode 180
14. Cyclic Synchronous Torque M ode 181
14.1 General Information 181
14.2 Functional Description 182
14.3 Structure of Controlword and Statusword 183
14.3.1 Statusword of the Cyclic Synchronous Torque M ode 183
15. Optional application FE 184
Object 0x60FD: Digital inputs 184
Object 0x60FE: Digital outputs 186
16. Device information 188
Object 0x67FE: Version number 188

1. About this manual

This manual describes cpc's interpretation and implementation of the DS402 standard. It should not be used as the foundation to design generic DS402 master controllers, with the assumption that servo drives from other manufactures will have identical behavior.

This manual describes the objects and operation modes used in cpc drivers and is based on the CiA ${ }^{\oplus} 402$ Draft Standard Proposal (DSP).

1.1 Revision History

Revision	Date	Description	Remarks
1.0	December 2017	Initial release	--

1.2 Copyright Notice

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means without prior written permission of Chieftek Precision Co., Ltd.

1.3 Trademarks

CANopen and CiA are registered trademarks of the CAN in Automation User's Group. Windows is a registered trademark of M icrosoft Corporation.

1.4 Disclaimer

1. Information furnished by cpc is believed to be accurate and reliable. However, no responsibility is assumed by cpc for its use, nor for any infringements of patents or other rights of third parties which may result from its use. cpc doesn't grant any license under its patent rights, nor the rights of others.
2. In addition, cpc assumes no responsibility for any errors that may appear in this document and for any claims or damages arising from information contained in this document.
3. The product specified in this document has been developed, produced, tested and documented in accordance with the relevant standards. cpc is not responsible for damages, accidents, or injuries caused by any deviation from the configuration and installation described in this guide;
4. Furthermore, cpc is not responsible for the performance of new measurements or ensuring that regulatory requirements are met.
5. The product specified in this document is not assumed to be used in critical application including, but not limited to, medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, as well as disaster prevention and crime prevention equipment.
6. We reserve the right to modify our products, including its hardware and software design, in order to improve its design and/or performance. The information in this document is subject to change without notice and does not represent a commitment by cpc.
7. Specifications are subject to change without notice.
8. Performance specification beyond those specified by safety regulations are guaranteed by design and not subject to production test.
9. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
10. cpc assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using cpc products.

1.5 Contact Us

Headquarters

Chieftek Precision Co., Ltd.
NO.3, Dali 1st Rd., Xinshi Dist., Southern Taiwan Science Park,
Tainan City. 741-45, Taiwan (R.O.C.) 3
TEL: +886-6-505-5858
FAX: +886-6-505-5959
Email : service@mail.chieftek.com

China

Chieftek M achinery Kunshan Co., Ltd.
No.1188, Hongqiao Rd, Kunshan, Jiangsu, P.R. China
Tel : +86-512-55252831
Fax : +86-512-55252851
Email : cn.service@mail.chieftek.com

Europe

cpc Europa GmbH
Industriepark 314, D-78244 Gottmadingen, Germany
Tel : +49-7731-59130-38
Fax: +49-7731-59130-28
Email : info@cpc-europa.de

USA

Chieftek Precision USA Co., Ltd.
2280 E. Locust Court. Ontario, CA 91761, USA
TEL: +1-909-773-1200
FAX: +1-909-773-1202
Email : info@usa.chieftek.com

2. Introduction

2.1 Abbreviations and terms

Term / Abbrev.	Stands for:
AC	Alternating current
C	Constant
COB	Communication object
csp	Cyclic synchronous position mode
cst	Cyclic synchronous torque mode
csv	Cyclic synchronous velocity mode
DC	Direct current
FE	Homing mode
hm	Input/output
I/O	Manufacturer-specific
ms	Network management
NM T	Power drive system
PDO	Profile position mode
PDS	Profile velocity mode
pp	Reserved
pv	Root mean square
r	Read only
r.m.s.	Read-write
RO	Torque mode (=profile torque)
RW	
tq	

2.2 Operation modes

The cpc device profile specifies the modes of operation, including:
। Profile position mode
। Profile velocity mode
1 Profile torque mode
। Homing mode
। Cyclic synchronous position mode
। Cyclic synchronous velocity mode
) Cyclic synchronous torque mode

2.3 Standard Servo Drive Objects (0x60nn)

(The " * " sign refers to the numeric range of the data type.)

Index	Sub- index	Name	Type	Access	Default	Max	Min	Unit	PDO mapping
0x6007	0x00	Abort connection option code	INT16	RW	0	3	0	-	X
0x603F	0x00	Error Code	UINT16	RO	0	*	*	-	0
0x6040	0x00	Controlword	UINT16	RW	0	*	*	-	0
0×6041	0x00	Statusword	UINT16	RO	-	*	*	-	0
0x605A	0x00	Quick stop option code	INT16	RW	2	4	-1	-	X
0x605B	0x00	Shutdown option code	INT16	RW	0	1	-1	-	X
0x605C	0x00	Disable operation option code	INT16	RW	0	1	-1	-	X
0x605D	0x00	Halt option code	INT16	RW	1	4	-1	-	X
0x605E	0x00	Fault reaction option code	INT16	RW	0	4	-1	-	X
0x6060	0x00	Modes of operation	INT8	RW	0	10	-6	-	0
0x6061	0x00	Modes of operation display	INT8	RO	0	*	*	-	0

Index	$\begin{aligned} & \text { Sub- } \\ & \text { index } \end{aligned}$	Name	Type	Access	Default	Max	Min	Unit	PDO mapping
0x6062	0x00	Position demand value	INT32	RO	-	*	*	count	0
0x6063	0x00	Position actual internal value	INT32	RO	0	*	*	count	0
0x6064	0x00	Position actual value	INT32	RO	0	*	*	count	0
0x6065	0x00	Following error window	UINT32	RW	0	*	*	count	0
0x6066	0x00	Following error time out	UINT16	RW	0	*	*	ms	0
0x6067	0x00	Position window	UINT32	RW	0	*	*	count	0
0x6068	0x00	Position window time	UINT16	RW	0	*	*	ms	0
0x606B	0x00	Velocity demand value	INT32	RO	-	*	*	count/s	0
0x606C	0x00	Velocity actual value	INT32	RO	0	*	*	count/s	0
0x606D	0x00	Velocity window	UINT16	RW	0	*	*	count/s	0
0x606E	0x00	Velocity window time	UINT16	RW	0	*	*	ms	0
0x606F	0×00	Velocity threshold	UINT16	RW	0	*	*	count/s	0

Index	Sub- index	Name	Type	Access	Default	Max	Min	Unit	PDO mapping
0x6070	0x00	Velocity threshold time	UINT16	RW	0	*	*	ms	0
0x6071	0x00	Target torque	UINT16	RW	0	*	*	0.10\%	0
0×6073	0x00	Max current	UINT16	RW	0	*	*	0.1\%	0
0x6074	0x00	Torque demand	INT16	RO	-			0.1\%	0
0x6075	0x00	M otor rated current	UINT32	RW	0	*	*	mA	X
0x6076	0x00	M otor rated torque	UINT32	RW	0	*	*	mNm (milli Newton metre)	X
0x6077	0x00	Torque actual value	INT16	RO	0	*	*	0.1\%	0
0x6078	0x00	Current actual value	INT16	RO	0	*	*	0.1\%	0
0x6079	0x00	DC link circuit voltage	UINT32	RO	0	*	*	mV .	X
0x6080	0x00	Max motor speed	UINT32	RW	1,500,000	*	*	count/s	0
0x607A	0x00	Target position	INT32	RW	0	*	*	count	0
0x607B	0x00	Highest subindex supported	2	C	2			-	X
	0x01	Min position range limit	INT32	RW	-2^{31}	*	*	count	X

Index	Sub- index	Name	Type	Access	Default	Max	Min	Unit	PDO mapping
	0x02	Max position range limit	INT32	RW	$2^{31}-1$	*	*	count	X
0x607C	0x00	Home offset	INT32	RW	0	*	*	count	0
0x607D	0x00	Highest sub- index supported	INT32	C	2	2		-	X
	0x01	M in position limit	INT32	RW	-2^{31}	*	*	count	X
	0x02	Max position limit	INT32	RW	$2^{31}-1$	*	*	count	X
0x607F	0x00	Max profile velocity	UINT32	RW	1,500,000	*	*	count/s	0
0×6081	0x00	Profile velocity	UINT32	RW	2,000,000	0x7FFFFFFF	1	count/s	0
0x6083	0x00	Profile acceleration	UINT32	RW	1,000,000	0x7FFFFFFF	1	count/s ${ }^{2}$	X
0x6084	0x00	Profile deceleration	UINT32	RW	1,000,000	0x7FFFFFFF	1	count/s ${ }^{2}$	0
0x6085	0x00	Quick stop deceleration	UINT32	RW	100,000,000	0x7FFFFFFF	1	count/s ${ }^{2}$	0
0x6087	0x00	Torque slope	UINT32	RW	100,000	*	*	0.1\%/s	0
0x6098	0x00	Homing method	INT8	RW	35	37	-12	-	0
	0x00	Highest sub- index supported	UINT32	C	2	*	*	-	X
0x6099	0x01	Speed during search for switch	UINT32	RW	20,000	*	*	count/s	X

Index	Sub- index	Name	Type	Access	Default	Max	Min	Unit	PDO mapping
	0X02	Speed during search for zero	UINT32	RW	20,000	*	*	count/s	X
0x609A	0x00	Homing acceleration	UINT32	RW	20,000	0x7FFFFFFF	1	count/s ${ }^{2}$	0
0x60B0	0x00	Position offset	INT32	RW	0	*	*	count	0
0x60B1	0x00	Velocity offset	INT32	RW	0	*	*	count/s	0
0x60B2	0x00	Torque offset	INT16	RW	0	*	*	0.1\%	0
0x60B8	0x00	Touch probe function	UINT16	RW	1	*	*	-	0
0x60B9	0x00	Touch probe status	UINT16	RO	-	-		-	0
0x60BA	0x00	Touch probe 1 positive edge	INT32	RO	-	*	*	count	0
0x60BB	0x00	Touch probe 1 negative edge	INT32	RO	-	*	*	count	0
0x60BC	0x00	Touch probe 2 positive edge	INT32	RO	-	*	*	count	0
0x60BD	0x00	Touch probe 2 negative edge	INT32	RO	-	*	*	count	0

Index	Sub- index	Name	Type	Access	Default	Max		Min	Unit	PDO mapping
0x60C2	0x00	Highest subindex supported	UINT8	C	2	2			-	X
	0x01	Interpolation time period value	UINT8	RW	1	255		1	-	X
	0x02	Interpolation time index	INT8	RW	-3	1		-3	-	X
0x60D5	0x00	Touch probe 1 positive edge counter	UINT16	RO	-	*		*	-	0
	0x00	Highest subindex supported	INT8	C	44	-			-	X
	0x01	1st supported homing method	INT8	C	(-12~-1) and all CiA402 standard mode	-			-	X
0x60E3	0x02	2nd supported homing method	INT8	C	(-12~-1) and all CiA402 standard mode	-			-	X
	0xFE	254 supported homing method	INT8	C	$(-12 \sim-1)$ and all CiA402 standard mode	-			-	X

Index	Sub- index	Name	Type	Access	Default	Max	Min	Unit	PDO mapping
0x60D6	0x00	Touch probe 1 negative edge counter	UINT16	RO	-	*	*	-	0
0x60F4	0x00	Following error actual value	INT32	RO	-	*	*	count	0
0x60FC	0x00	Position demand internal value	INT32	RO	-	*	*		0
0x60FD	0x00	Digital inputs	UINT32	RO	-	-		-	0
0x60FE	0x00	Highest subindex supported	UINT32	C	1	0×01		-	X
	0x01	Physical outputs	UINT32	RW	0000 0000h	*	*	-	X
0x60FF	0x00	Target Velocity	INT32	RW	0	*	*	count/s ${ }^{2}$	0

Index	Sub- index	Name	Type	Access	Default	Max Min	Unit	
0x6502	0x00	Supported drive modes	UINT32	RO	$0 \times 3 A D$	cst, csv, csp, hm, tq, pv, and pp bits: 1 = mode is supported. $0=$ mode is not supported manufacturer-specific bits: No. r(eserved) bits: 0	-	0
0x67FE	0x00	Version number	UINT32	C	3	-	-	X

2.4 Format of Object Dictionary

The format of the object description and the entry description in this manual is as follows:

Object description

Index	nnnn
Name	Name of the object
Object code	Variable / Array / Record
Data type	Integer8 / Integer16 / Integer32 Unsigned8 / Unsigned16 / Unsigned32

Entry description

Sub-index	Oxnn
Description	Description of the sub-index
Access	RW / RO / C (Read/Write / Read Only / Constant)
PDO mapping	Yes / No
Value range	Number or INT or UINT
Default value	The object's default value
Units	When the object involves measurement, unit is applied.

। The "value range" in the entry description:

Description	Numeric range
INT8	$-2^{7} \sim 2^{7}-1$
UINT8	$0 \sim 2^{7}-1$
INT16	$-2^{15} \sim 2^{15}-1$
UINT16	$0 \sim 2^{15}-1$
INT32	$-2^{31} \sim 2^{31}-1$
UINT32	$0 \sim 2^{31}-1$

3. General Entries

3.1 Drive Error

Object 0x6007: Abort connection option code

This object indicates what the reaction will be when one of the following events occurs:
CAN bus-off, heartbeat, fieldbus stopped state entered, and reset communication.

1 Object description
Index 6007 Name Abort connection option code Object code Variable Data type Interger16 Entry description Sub-index 0×00 Access RW PDO mapping No Value range $0 \sim 3$ Default value 0 Units No

, Value definition

Value	Definition
0	No action
1	Fault signal
2	Disable voltage command
3	Quick stop command
2	

Object 0x603F: Error code

This object indicates the last error that appears in the drive device.

। Object description

Index	$603 F$
Name	Error code
Object code	Variable
Data type	Unsigned16

। Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	Unsigned16
Default value	0
Units	No

3.2 Drive Data

Object 0x6502: Supported drive modes

This object indicates what modes are supported. See bit definitions below.

। Object description

Index	6502
Name	Supported drive modes
Object code	Variable
Data type	Unsigned32

1 Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
	cst, csv, csp, hm, tq, pv, and pp bits: $1=$ mode is supported. $0=$ mode is not supported
Value range	manufacturer-specific bits: No.
Default value	r(eserved) bits: 0
Units	No

Bit definition

Bit	Function
0	pp
1	Reserved
2	pv
3	tq
4	Reserved
5	hm
6	Reserved
7	csp
8	csv
9	cst
10	Reserved
$11-15$	Reserved
$16-31$	Reserved

4. Device Control

4.1 General

The PDSfinite state machine is an abstract concept to define the behavior of a black box when a control device interacts with the PDS. It defines the application behavior of the PDS.

The PDS finite state machine is operated by these means:
। Controlword from control device sent via network;
। Local signals, such as script, faults, or signals sent via RS232.
1 The state of the PDS reported by the statusword produced by the drive device.
। Error detection signals.

4.2 Finite State M achine and States

The state machine describes the device status and the possible control sequence of the drive.
। A single state represents a specific internal or external behavior.
1 The state of the drive also determines which commands are accepted; for example, a point-to-point motion can be started only when the drive is in OPERATION ENABLED state.

The device states and possible control sequence of the drive are described by the state machine, as depicted in the following figure:

4.2.1 Diagram of Power Drive System Finite State M achine

4.2.2 Description of the states of finite state machine

State	Description
Not Ready to Switch On	I Low-level power (e.g. 24V, 5V) has been applied to the drive. । Drive is being initialized or is running self-test; The communication channel is opened after this state hence users won't be able to encounter this state in practice. A brake, if present, is applied in this state. Drive function is disabled.
Switch On Disabled	। Drive initialization is complete. I Drive parameters have been set up. I Drive parameter may be changed. । Drive function is disabled.
Ready to Switch On	I Drive parameters may be changed. । Drive function is disabled.
Switched On	। High voltage has been applied to the drive. । Drive parameter may be changed. , Drive function is disabled.
Operation Enabled	। No faults have been detected. । Drive function is enabled and power is applied to the motor. । Motor operation related parameters cannot be changed.
Quick Stop Active	। Drive parameters may be changed. । Quick stop function is being executed. । Drive function is enabled and power is applied to the motor.
Fault Reaction Active	I Drive parameters may be changed. 1 A non-fatal fault has occurred in the drive. 1 Quick stop function is being executed if fault reaction option is set to quick stop. । Drive function is enabled and power is applied to the motor.
Fault	Drive parameters may be changed. A fault has occurred in the drive. Drive function is disabled.

4.2.3 Descriptions of the transitions of finite state machine

	From state	To state	Event/Action	
$\mathbf{0}$	Start	Not Ready to Switch On	Event: Action:	Power-on reset. The drive self-tests and/or self-initializes.
$\mathbf{1}$	Not Ready to Switch On	Switch On Disabled	Event: Action:	The drive has self-tested and/or initialized successfully. Activate communication and process data monitoring
$\mathbf{2}$	Switch On Disabled	Ready to Switch On	Event: Action:	"Shutdown" command received from controlword.
None				

-	From state	To state	Event/Action	
11	Operation Enable	Quick Stop Active	Event: Action:	"Quick Stop" command received from controlword. The Quick Stop function is executed.
12	Quick Stop Active	Switch On Disabled	Event: Action:	"Quick Stop" function is completed or "Disable Voltage" command received from controlword. Drive function is disabled
13	Any state	Fault Reaction Active	Event: Action:	A fatal fault has occurred in the drive. Execute appropriate fault reaction.
14	Fault Reaction Active	Fault	Event: Action:	The fault reaction is completed. The drive function is disabled.
15	Fault	Switch On Disabled	Event: Action:	"Fault reset" command received from controlword. If no fault exists currently on the drive, a reset of the fault condition will be carried out. After leaving the "Fault" state, the "Fault Reset" bit in controlword should be cleared to 0 for future fault reset command.

4.3 Detailed Objects specifications

The following chapter describes

Controlword and Statusword - Ch.4.3.1 and 4.3.2

The state of the device is controlled by the controlword, while the status of the device is indicated by the statusword.

The following content includes:
ÿ Structure of controlword and statusword
$\ddot{y} \quad$ Command coding and state coding
ÿ Statusword bit interpretations

Objects of stop, halt, and fault - Ch. 4.3.3 to 4.3.7

4.3.1 Object 0x6040: Controlword

This object indicates the received command that controls the PDS FSA.
Please refer to the chart of <Controlword Structure>, its bits are structured as described in the chart below.

Bits $0,1,2,3$, and 7 are supported.
Bits $4,5,6$, and 9 are operation mode specific.
Bit 8 - the action of bit 8 is mode-specific.
If bit $8=1$, the commanded motion will be interrupted and the PDS will act according to the halt option code.
Bit 10 is reserved.
Bits 11 to 15 are manufacturer-specific according to 402 DSP; these bits are reserved by cpc.

Object description

Index	6040
Name	Controlword
Object code	Variable
Data type	Unsigned16

। Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	Unsigned16
Default value	0
Units	No

4.3.1.1 Controlword structure

<Controlword Structure >

Bit	Keys	Name
$\mathbf{0}$	so	Switch on
$\mathbf{1}$	ev	Enable voltage
$\mathbf{2}$	qs	Quick stop
$\mathbf{3}$	eo	Enable operation
$\mathbf{4 - 6}$	oms	Operation mode specific
$\mathbf{7}$	fr	Fault reset
$\mathbf{8}$	h	Halt
$\mathbf{9}$	oms	Operation mode specific
$\mathbf{1 0}$	r	Reserved
$\mathbf{1 1 \sim 1 5}$	(ms)	M anufacturer-specific; these are reserved by cpc.

4.3.1.2 Command coding

The controlword contains the bits controlling the states of PDS, these commands are coded in the way as described in the chart here:
<Command Coding >

Command	Bits of the controlword					Transitions
	7	3	2	1	0	
	fault reset	enable operation	quick stop	enable voltage	switch on	
Shut down	0	X	1	1	0	2, 6, 8
Switch on	0	0	1	1	1	3
Switch on +enable operation	0	1	1	1	1	$\begin{gathered} \hline 3+4 \\ \text { (*note) } \\ \hline \end{gathered}$
Disable voltage	0	X	X	0	X	7, 9, 10, 12
Quick stop	0	X	0	1	X	7,10,11
Disable operation	0	0	1	1	1	5
Enable operation	0	1	1	1	1	4,16
Fault reset	$\stackrel{5}{*}$	x	X	x	x	15

[^0]
4.3.2 Object 0x6041: Statusword

This object indicates the status of PDS FSA.

It is structured as defined in the chart below:
Bits 0 to 10 are supported
Bit 7, originally defined as warning by 402 DSP, is hereby reserved by cpc .
Bit 8 and 15 , originally defined as manufacturer-specific, is hereby reserved by cp.
Bits 12 and 13 :
If the related functionality of the oms bits is not available, the bit will set to 0 .

Object description
Index 6041 Name Statusword Object code Variable Data type Unsigned16

Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	Unsigned16
Default value	No
Units	No

4.3.2.1 Statusword structure

<Statusword Structure >

Bit	Keys	Name
$\mathbf{0}$	rtso	Ready to switch on
$\mathbf{1}$	so	Switched on
$\mathbf{2}$	oe	Operation enabled
$\mathbf{3}$	F	Fault
$\mathbf{4}$	ve	Voltage enabled
$\mathbf{5}$	qs	Quick stop
$\mathbf{6}$	sod	Switch on disabled
$\mathbf{7 \sim \mathbf { 8 }}$	(r)	Reserved
$\mathbf{9}$	rm	Remote
$\mathbf{1 0}$	tr	Target reached
$\mathbf{1 1}$	ila	Internal limit active
$\mathbf{1 2 - 1 3}$	oms	Operation mode specific
$\mathbf{1 4}$	(ms)	When bit 14 is set to 1, it means (1) The transition from power-off to operation enabled state; or
$\mathbf{1 2}$ Quick-stop is in process, or, waiting for external		
enable.		

4.3.2.2 State coding

The combinations of bits 0 to 7 will code the states of PDS FSA. See the chart below:
<State Coding >

Statusword									PDS FSA state
	W	sod	qS	ve	f	oe	so	rtso	
	$\begin{aligned} & \sum_{0}^{2} \\ & \frac{0}{2} . \\ & \vdots .0 \end{aligned}$		$\begin{aligned} & 0 \\ & \underline{\underline{n}} \\ & \hat{त} \\ & \hat{\hat{0}} \\ & \underline{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{\delta}{0} \\ & \frac{0}{0} \\ & 0 . \\ & 0 \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \hline 0 \end{aligned}$					
xxxx xxxx	X	0	X	X	0	0	0	0	Not ready to switch on
XXXX XXXX	X	1	X	X	0	0	0	0	Switch on disabled
Xxxx x xxx	X	0	1	x	0	0	0	1	Ready to switch on
Xxxx $\times x$ xx	X	0	1	X	0	0	1	1	Switched on
XXXX XXXX	X	0	1	X	0	1	1	1	Operation enabled
XXXX XXXX	X	0	0	X	0	1	1	1	Quick stop active
XXXX XXXX	X	0	X	X	1	1	1	1	Fault reaction active
XXXX XXXX	X	0	X	X	1	0	0	0	Fault

4.3.2.3 Statusword bit interpretations

Bit	Name	Value	Explanations
0	Ready to switch on	--	--
1	Switched on	--	--
2	Operation enabled	--	--
3	Fault	--	--
4	Voltage enabled	1	High voltage is applied to the PDS.
5	Quick stop	0	The PDS is reacting on a quick stop request.
6	Switch on disabled	--	--
7-8	Reserved	--	--
9	Remote	$\begin{gathered} 0 \\ \text { (local) } \end{gathered}$	Controlword is not processed.
		$\begin{gathered} 1 \\ \text { (remote) } \end{gathered}$	Controlword is processed.
10	Target reached	1	(1) Indicates that the PDS has reached the set-point. Bit 10 is operation mode specific, please see related chapters. (2) The operation mode is changed. *Note: Changing the target value via software will alter this bit ($0 \ddagger 1$ or $1 \ddagger 0$).
11	Internal limit active	1	An internal limit is active. (example: position range limit).
12~13	Operation mode specific	--	Operation mode specific
14	Manufacturerspecific	--	See $<$ Statusword structure> above.
15	Reserved	--	--

4.3.3 Object 0x605A: Quick stop option code

This object indicates what action should be taken when the quick stop function is activated.

The slow down ramp is the deceleration value of the mode being used in operation.

। Object description

Index	605 A
Name	Quick stop option code
Object code	Variable
Data type	Unsigned16

1 Entry description

Sub-index	0×00
Access	RW
PDO mapping	No
Value range	$-1 \sim 4$
Default value	2
Units	No

1 Value definition

Value	Definition
-1	Dynamic brake. (Brake motor by means of a controlled motor short circuit)
0	Disable drive function
1	Slow down on slow down ramp and transit into switch on disabled
2	Slow down on quick stop ramp and transit into switch on disabled
3	Slow down on current limit and transit into switch on disabled
4	Slow down on voltage limit and transit into switch on disabled

4.3.4 Object 0x605B: Shutdown option code

This object indicates what action should be taken when there is a state transition of: Operation enabled Ë Ready to switch on.

1 Object description

Index	$605 B$
Name	Shutdown option code
Object code	Variable
Data type	INT16

1 Entry description

Sub-index	0×00
Access	RW
PDO mapping	No
Value range	$-1 \sim 1$
Default value	0
Units	No

। Value definition

Value Definition

Dynamic brake. (Brake motor by means of a controlled motor
-1 short circuit)
$0 \quad$ Disable drive function (switch-off the drive power stage)
1 Slow down on slow down ramp; disable of the drive function

4.3.5 Object 0x605C: Disable operation option code

This object indicates what action should be taken when there is a state transition of: Operation enabled Ë Switched on.

1 Object description

Index	$605 C$
Name	Disable operation option code
Object code	Variable
Data type	INT16

। Entry description

Sub-index	0×00
Access	RW
PDO mapping	No
Value range	$-1 \sim 1$
Default value	0
Units	No

। Value definition

Value Definition

Dynamic brake. (Brake motor by means of a controlled motor
-1 short circuit)
$0 \quad$ Disable drive function (switch-off the drive power stage)
1 Slow down on slow down ramp; disable of the drive function

4.3.6 Object 0x605D: Halt option code

This object indicates what action should be taken when halt is executed The slow down ramp is the deceleration value of the mode being used in operation.

1 Object description

Index	$605 D$
Name	Halt option code
Object code	Variable
Data type	INT16

। Entry description

Sub-index	0×00
Access	RW
PDO mapping	No
Value range	$-1 \sim 4$
Default value	1
Units	No

। Value definition

Value Definition

Dynamic brake. (Brake motor by means of a controlled motor
-1 short circuit)
$0 \quad$ Disable drive function (Immediately power off)
1 Slow down on slow down ramp and stay in operation enabled
2 Slow down on quick stop ramp and stay in operation enabled
3 Slow down on current limit and stay in operation enabled
4 Slow down on voltage limit and stay in operation enabled

4.3.7 Object 0x605E: Fault reaction option code

This object indicates what action should be taken when fault is detected in the PDS. The slow down ramp is the deceleration value of the mode being used in operation.
1 Object description

Index	$605 E$
Name	Fault reaction option code
Object code	Variable
Data type	INT16

1 Entry description

Sub-index	0×00
Access	RW
PDO mapping	No
Value range	$-1 \sim 4$
Default value	0
Units	No

। Value definition

Value Definition

-1
Dynamic brake. (Brake motor by means of a controlled motor short circuit)
$0 \quad$ Disable drive function (Immediately power off)
1 Slow down on slow down ramp and stay in operation enabled
2 Slow down on quick stop ramp and stay in operation enabled
3 Slow down on current limit and stay in operation enabled
4 Slow down on voltage limit and stay in operation enabled

5. Modes of Operation

5.1 Functional Description

Abstract

The behavior of the PDS depends on the mode chosen for operation. Though the cpc PDS implements several modes of operation, the modes cannot be changed during Operation Enable state.

On one hand, the control device writes to the object 0x6060 (modes of operation);
on the other hand, the drive device provides object 0x6061 (modes of operation display) to indicate what operation mode is actually activated.
। Controlword, statusword, and set-point are mode-specific.
1 The switching between modes of operation requires that no automatic reconfiguration of COBs (communication objects) for real-time data transmission is necessary.
Namely, all necessary data objects (for the mode) that may be used during Operation Enabled state is configured before cyclic communication function is enabled.
। For cpc drives, it is possible to switch modes in any FSA state except for the Operation Enabled state.

The following modes of operation are implemented in cpc's servo drive:

। Profile position mode
(pp)
। Homing mode
(hm)
। Profile velocity mode
(pv)
। Profile torque mode
(tq)
। Cyclic synchronous position mode (csp)

- Cyclic synchronous velocity mode (csv)
। Cyclic synchronous torque mode
(cst)

5.2 Objects

Object 0x6060: M odes of operation

This object indicates the required operation mode.

। Object description

Index	6060
Name	M odes of operation
Object code	Variable
Data type	INT8

1 Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes

Value range $\quad-6 \sim 10$

Default value 0
Units No

Value	Definition
-6	for cpc internal use only
-5	for cpc internal use only
-4	Direct position
-3	Direct velocity
-2	Direct torque
-1	Direct voltage
0	Drive is disabled
1	Profile position mode
2	Reserved
3	Profile velocity mode
4	Profile torque mode
5	Reserved
6	Homing mode
7	Reserved
8	Cyclic synchronous position mode
9	Cyclic synchronous velocity mode
10	Cyclic synchronous torque mode

Object 0x6061: Modes of operation display

This object provides the actual operation mode.

। Object description

Index	6061
Name	Modes of operation display
Object code	Variable
Data type	INT8

। Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	INT8
Default value	0
Units	No

6. Profile Position Mode

6.1 General information

This chapter describes about how to configure a point-to-point move in a profiled motion.

The driver receives a target position value, then the trajectory generator converts this target position value into a position demand value to the position control loop. The overall structure of this mode is shown as the diagram below.

At the input to the trajectory generator, parameters are limited before being normalized to the internal units.

The trajectory input includes:

1 Position range limit
। Software position limit
। Profile velocity
1 End velocity
। Max profile velocity
। Max motor speed
। Profile acceleration
। Profile deceleration
, Quick-stop deceleration
। Quick-stop option code

6.2 Structure of Controlword and Statusword

6.2.1 Controlword of the Profile Position Mode.

Bit	Function
$0 \sim 3$	*See chapter 4.3.1.1 - Device Control/Controlword structure
4	New set-point
5	Change set immediately
6	Abs/rel
7	*See chapter 4.3.1.1 - Device Control/Controlword structure
8	Halt
9	Reserved
$10 \sim 15$	*See chapter 4.3.1.1 - Device Control/Controlword structure

1 Definition of bit 4, 5, 6, and 8

Bit	Name	Value	Description
4	New set-point	0	There is No target position given
		1	There is target point given.
	0	Fully complete the present positioning (target reached) before the next set-point gets started. See ch. 6.3.2 - set of set-point.	
		1	Interrupt the present positioning and start the next set-point immediately. See ch. 6.3.2 - single set-point.
6	Absolute / Relative	0	The target position is an absolute value.
8	Halt	1	The target position is a relative value.
		0	Perform or continue positioning.
		Motor is stopped according to halt option code (0x605D).	

6.2.2 Statusword of the Profile Position Mode

Bit	Function
$0 \sim 9$	*See chapter 4.3.2.1 - Device Control/Statusword structure
10	Target reached
11	*See chapter 4.3.2.1 - Device Control/Statusword structure
12	Set-point acknowledge
13	Following error
$14 \sim 15$	*See chapter 4.3.2.1 - Device Control/Statusword structure

- Definition of bit 10, 12 and 13

Bit	Name	Value	Description
10	Target reached	0	Halt =0: Target position not reached. Halt =1: motor decelerates.
	12	Halt =0: Target position reached Halt =1: motor decelerates to 0 velocity.	
		Previous set-point has been processed, ready to accept new set-point.	
		Detects that "new set-point bit" in controlword is 1; or, set-point buffer is busy.	
13	Following error	0	No following error.
	1	Following error occurs.	

6.3 Functional Descriptions

6.3.1 General

The setting of set-point is determined by these three together:

The timing of the new set-point bit (bit 4 in controlword),
। The change set immediately bit (bit 5 in controlword), and
The set-point acknowledgement bit (bit 12 in statusword).

The setting procedure is as follows:

1. A set-point is applied to the driver.
2. The control device, such as a computer, signals with a rising edge of the new set-point bit (bit 4 in controlword) that the set-point data is completely transmitted.
3. The driver sets the set-point acknowledgement bit (bit 12 in statusword) to 1.
4. The control device makes the new set-point bit to 0 .
5. The driver signals that the set-point acknowledgement bit is set to 0 , indicating its ability to accept new set-points.

Please refer to the diagram on the next page.

Procedure of setting Set-point

6.3.2 Single Set-point \& Set of Set-point

There are $\mathbf{2}$ ways of applying target positions to a driver:
। Single set-point (the "change set immediately" bit of controlword =1)
When a set-point is in progress and a new set-point is validated via the new set-point (bit 4) in the controlword, the new set-point will be processed immediately.

Single Set-point (change set immediately bit =1)

Set of set-points (the "change set immediately" bit of controlword $=0$)
When a set-point is in progress and a new set-point is validated via the new set-point (bit 4) in the controlword, the new set-point will be processed only after the previous one has been reached.

Set of Set-point (change set immediately bit $=0$)

6.3.3 Buffered Set-point

When "set of set-point" is used (i.e., change set immediately bit $=0$), the cpc driver supports two set-points:
। One is presently processed, and
। The other is buffered.

Note:

\ddot{y} The cpc driver can buffer one set-point.
\ddot{y} If there are two or more set-points to be buffered, the first will be stored while the second and the later ones will be ignored.
Please refer to the diagram below.

Buffered Set-point

Diagram explanation:

Item	Description
(1)	If no set-point is in progress, the new set-point will become active immediately.
(2)	If a set-point is in progress, the new set-point will be stored in the buffer that is free.
(a)	Set-point (A) has finished, I The "set-point acknowledge (bit 12)" signals this status with falling edge which enables the buffered new set-point (B) to be active immediately.
(3)	Same as (2). If
(4)	Ife buffer is busy (set-point acknowledge bit =1), The new set-point (D) will be ignored and won't be stored.
(3)	Same as α. Set-point (B) has finished; the "set-point acknowledge bit" signals with falling edge, and the stored set-point (C) becomes active immediately. The buffer hence becomes free.
(5)	Same as (2). Note that the set-point which advances to be stored is the new set- point (E) instead of the previously ignored set-point (D).
(6)	The "change set immediately bit" is set to 1, The new set-point following after this event will be processed immediately as single set-point.
All previously loaded set-points (the buffered and the one in	
progress) will be abandoned.	

6.4 Objects

Object 0x607A: Target position

The target position is the position to which the drive should move in position profile mode, using the present settings of motion control parameters such as velocity, acceleration, deceleration and motion profile type. The target position is given in counts. The target position can be absolute or relative, depending on the Abs/Rel flag-the bit 6-in the controlword.

1 Object description

Index	607 A
Name	Target position
Object code	Variable
Data type	Integer32

Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	Integer32
Default value	0
Units	Count

Object 0x607B: Position range limit

This object contains two sub-parameters-namely, the minimum position range limit and the maximum position range limit-that limit the numerical range of the input value.
Upon reaching or exceeding these limits, the input value automatically wrap to the other end of the range.
To disable the position range limits, please set the two sub-parameters to 0 .
1 Object description

Index	607 B
Name	Position range limit
Object code	Array
Data type	Integer32

See entry description on next page.

Entry description

Sub-index	0×00
Description	Highest sub-index supported
Access	C
PDO mapping	No
Value range	2
Default value	2
Units	No

Sub-index	0×01
Description	M in position range limit
Access	RW
PDO mapping	No
Value range	Integer32
Default value	-2^{31}
Units	Count

Sub-index	0×02
Description	Max position range limit
Access	RW
PDO mapping	No
Value range	Integer32
Default value	$2^{31}-1$
Units	Count

Object 0x607D: Software position limit

This object contains the 2 sub-indexes (min position limit and max position limit) which specify the actual position limits for both the position demand value and the position actual value.

Note:

Homing is required to validate these software position limits.
1 Object description

Index	607 D
Name	Software position limit
Object code	Array
Data type	Integer32

1 Entry description

Sub-index	0×00
Description	Highest sub-index supported
Access	C
PDO mapping	No
Value range	2
Default value	2
Units	No

Sub-index	0×01
Description	M in position limit
Access	RW
PDO mapping	No
Value range	Integer32
Default value	-2^{31}
Units	Count

Sub-index	0×02
Description	Max position limit
Access	RW
PDO mapping	No
Value range	Integer32
Default value	$2^{31}-1$
Units	Count

Object 0x607F: Max profile velocity

The object is the configured maximum allowed velocity in either direction during a profiled move.

Note:

For compatibility reason, the value of $0 \times 607 \mathrm{~F}$ (Max profile velocity) is internally equal to that of object 0x6080 (M ax motor speed).
। Any change on object 0x607F will be applied to object 0x6080.

। Object description

Index	$607 F$
Name	Max profile velocity
Object code	Variable
Data type	UINT32

1 Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	UINT32
Default value	$1,500,000$
Units	count/s

Object 0x6080: Max motor speed

This is the configured maximum allowed speed for the motor in either direction, it is for protection reason and is taken from the motor name-plate.

Note:

For compatibility reason, the value of 0x607F (Max profile velocity) is internally equal to that of object 0x6080 (M ax motor speed).
, Any change on object 0x607F will be applied to object 0x6080.

Object description

Index	6080
Name	Max motor speed
Object code	Variable
Data type	UINT32

1 Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	$1 \sim 7$ FFFFFFF
Default value	$1,500,000$
Units	count/s

Object 0x6081: Profile velocity

The "Profile velocity" is the velocity normally attained at the end of the acceleration ramp during a profiled move and is valid for both directions of motion. The value is given in counts.

। Object description

Index	6081
Name	Profile velocity
Object code	Variable
Data type	UINT32

Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	$1 \sim 7 F F F F F F F$
Default value	$2,000,000$
Units	count/s

Object 0x6083: Profile acceleration

This object indicates the configured acceleration. The value is given in count/s s^{2}.

। Object description

Index	6083
Name	Profile acceleration
Object code	Variable
Data type	UINT32

Entry description

Sub-index	0×00
Access	RW
PDO mapping	No
Value range	$1 \sim 7$ FFFFFFF
Default value	$1,000,000$
Units	count/ s ${ }^{2}$

Object 0x6084: Profile deceleration

This object indicates the configured deceleration. The value is given in the same units as the profile acceleration object (0x6083).

1 Object description

Index	6084
Name	Profile deceleration
Object code	Variable
Data type	UINT32

। Entry description

Sub-index	0×00
Access	RW
PDO mapping	No
Value range	$1 \sim 7$ FFFFFFF
Default value	$1,000,000$
Units	count/ s ${ }^{2}$

Object 0x6085: Quick stop deceleration

This object indicates the configured deceleration used to stop the motor when the quick stop function is triggered and the quick stop code object (605A) is set to 2.
The quick stop deceleration is also used if the fault reaction code object (605E) is 2 and the halt option code object (605D) is 2.
The value is given in the same units as profile acceleration (6083).
1 Object description

Index	6085
Name	Quick stop deceleration
Object code	Variable
Data type	UINT32

1.Entry descriptionSub-index 0×00 Access RW PDO mapping Yes Value range $1 \sim$ 7FFFFFFF Default value $1,000,000$ Units count/ s ${ }^{2}$

7. Position Control Function

7.1 General information

This chapter describes all the parameters required for closed-loop position control.

The control mainly relies on these $\mathbf{2}$ inputs:
। The position demand value (0×6062), and
। The position actual value (0x6064), e.g., encoder.

To make sure that the physical limits of a driver is not exceeded, an absolute function is implemented - the current limit function and the velocity limit function - for the position control effort.

The following terms are used in this chapter

Following error

When the position actual value is outside the following error window, which is symmetrically aligned to the position demand value, for over the configured time duration (i.e., following error timeout), the following error bit $\mathbf{1 3}$ in statusword is set. See the chart below.
(see next page)

Following error time out (0x6066)

Target reached

When the position actual value is within the position window, which is symmetrically aligned to the position demand value, over a period of configured time duration (i.e., position window time), the target reached bit $\mathbf{1 0}$ in statusword is set. See the chart below.

Position window time (0x6066)

7.2 Objects

Object 0x6062: Position demand value

This object gives the demand position value. It is given in count.

। Object description

Index	6062
Name	Position demand value
Object code	Variable
Data type	INT32

1 Entry description

Sub-index	0×00
Access	RO
PDO mapping	No
Value range	INT32
Default value	No
Units	count

Object 0x6063: Position actual internal value

This object is for internal algorithm. It gives the actual value of the position measurement device, and is one of the two inputs of the closed-loop position control. The value is given in counts.

। Object description

Index	6063
Name	Position actual internal value
Object code	Variable
Data type	INT32

Entry description

Sub-index	0×00
Access	RO
PDO mapping	No
Value range	INT32
Default value	No
Units	count

Object 0x6064: Position actual value

The position actual value object indicates the actual value of the position measurement device (for example, an encoder). The value is given in counts.

1 Object description

Index	6063
Name	Position actual value
Object code	Variable
Data type	INT32

1
Entry description

Sub-index	0×00
Access	RO
PDO mapping	No
Value range	INT32
Default value	No
Units	count

Object 0x6065: Following error window

This object is a configured range of tolerated position values symmetrically to the position demand value. If the actual position value falls out of the following error window, a "following error" occurs. For instance, a following error may occur
। When the driver is blocked
। When the profile velocity is unreachable, and
। If the closed-loop coefficient, i.e., gain, is wrong.

If the value of this object is set to FFFF FFFF, this following control function will be switched off.

। Object description

Index	6065
Name	Following error window
Object code	Variable
Data type	UINT32

1 Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	UINT32
Default value	0
Units	Count

Object 0x6066: Following error time out

This object is a configured time duration for a following error situation.

If a following error occurs longer than this configured time duration (given in ms),
। A fault event will rise, and
। The bit 13 of the status word (i.e., following error) will set to 1.

। Object description

Index	6066
Name	Following error timeout
Object code	Variable
Data type	UINT16

। Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	UINT16
Default value	0
Units	Count

Object 0x6067: Position window

The position window object defines a symmetrical range of allowed positions relative to the target position. If the actual position of the encoder is within this window, the target position is regarded as reached.
If the value of this object is set to FFFF FFFF, this position window control function will be switched off.

। Object description
Index 6067 Name Position window Object code Variable Data type UINT32 Entry description Sub-index 0×00 Access RW PDO mapping Yes Value range UINT32 Default value 0 Units Count

See diagram on the next page.

Object 0x6068: Position window time

When the actual position is within the position window (0x6067) for the configured position window time - given in ms - the bit 10 (target reach) in status word will set to 1 .

। Object description

Index	6068
Name	Position window time
Object code	Variable
Data type	UINT32

Entry description

Sub-index	0×00
Access	RW
PDO mapping	No
Value range	UINT32
Default value	0
Units	ms

Object 0x60C2: Interpolation time period

This object will be used in cyclic synchronous position mode; it indicates the configured interpolation cycle time, and has 2 sub-indexes.
The interpolation time period (sub-index 0×01) value is given in $10^{\text {(interpolation time index) }}$ second. The interpolation time index is dimensionless.

। Object description

Index	$60 C 2$
Name	Interpolation time period
Object code	Record
Data type	Interpolation time period record (0x0080)

Sub-index	0x00
Description	Highest sub-index supported
Access	C
PDO mapping	No
Value range	2
Default value	2
Units	No

Sub-index	0×01
Description	Interpolation time period value
Access	RW
PDO mapping	No
Value range	1 to 255
Default value	1
Units	No

Sub-index	0×02
Description	Interpolation time index
Access	RW
PDO mapping	No
Value range	-3 to 1
Default value	-3
Units	Count

Object 0x60F4: Following error actual value

This object provides the actual value, given in counts, of the following error.
। Object description

Index	60 F4
Name	Following error actual value
Object code	Variable
Data type	INT32

Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	INT32
Default value	No
Units	Count

Object 0x60FC: Position demand internal value

This object provides the output of the trajectory generator in profile position mode. The value is given in counts.

1 Object description

Index	60FC
Name	Position demand internal value
Object code	Variable
Data type	INT32

Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	INT32
Default value	No
Units	Count

8. Homing Mode

8.1 General Information

To operate the drivers, an exact knowledge of absolute position is usually needed.
Due to cost reasons, drivers often don't have an absolute encoder, a homing operation is necessary.

This chapter describes the methods by which drivers seek home position.
There are various methods achieving this by using

1. Limit switches at the end of travel, or
2. Home switch in mid-travel, or
3. The mostly used Index (zero) pulse train from an incremental encoder.

Input Data

The inputs to homing method are:
, Controlword
, Homing method
, Homing speed
Users can define two kinds of speed. Usually, the faster one to find the home switch, and the slower one to find the index pulse.
Homing acceleration
Home offset
The value of this object is used as the new position value of the home reference point (e.g., home switch, home index, mechanical hard stop), or mechanical home position.
In addition, the cpc specific:
। Hard stop current\%, and
, Hard stop period

Output Data

There is no output data except for those bits in the statusword that return the status or result of the homing process and the demand to the position control loops.

8.2 Structure of Controlword and Statusword

8.2.1 Controlword of Homing M ode

Bit	Function
$0 \sim 3$	*See chapter 4.3.1.1 - Device Control/Controlword structure
4	Homing operation start
$5 \sim 6$	Reserved
7	*See chapter 4.3.1.1 - Device Control/Controlword structure
8	Halt
$9 \sim 15$	*See chapter 4.3.1.1 - Device Control/Controlword structure

Definition of bit 4 and 8

Bit	Name	Value	Description
4	Homing operation start	0	Homing mode inactive.
		1	Start/continue homing procedure
8	Halt	0	Activate bit 4
		1	Stop the motor according to halt option code (0x605D).

8.2.2 Statusword of Homing Mode

Bit	Function
$0 \sim 9$	*See chapter 4.3.2.1 - Device Control/Statusword structure
10	Target reached
11	*See chapter 4.3.2.1 - Device Control/Statusword structure
12	Homing attained
13	Homing error
$14 \sim 15$	*See chapter 4.3.2.1 - Device Control/Statusword structure

1 Definition of bit 10, 12 and 13

Bit 13 (homing error)	Bit 12 (Homing attained)	Bit 10 (Target reached)	Definition
0	0	0	Homing procedure is being carried out.
0	0	1	Velocity $=0$, homing is not completed or not started.
0	1	0	Homing is completed, velocity is not 0.
0	1	1	Homing is completed, velocity is $\mathbf{0}$.
1	0	0	Homing error occurred, velocity is not 0.
1	0	1	Homing error occurred, velocity is 0.
1	1	X	Reserved.

8.3 Object

Object 0x607C: Home offset

This object defines the configured difference between
। The (new) zero position for application (which is finalized after homing is completed) AND
। The machine home position found during homing.

The default of home offset is 0 .

During homing, the driver will seek and home on the home reference point (e.g., home switch, home index, or mechanical hard stop). When home offset object is applied, its value will be set as the position value of the machine home position. Please refer to the diagram on the next page.
, Object description

Index	$607 C$
Name	Home offset
Object code	Variable
Data type	INT32

1 Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	INT32 *
Default value	0
Units	count

* When home offset object is applied, the new coordinate system (which is hence generated) needs to be within the modulo range.

Setting of home offset value

Object 0x6098: Homing method

। Object description

Index	0×6098
Name	Homing method
Object code	Variable
Data type	Integer8

Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	$-12 \sim 37$
Default value	35
Units	No

Data description

$-12 \sim-1$	cpc homing methods. See ch. 8.6 for details.
0	Do nothing
$1 \sim 37$	M ethod $1 \sim 37$. See ch. 8.5 for details.

Object 0x60E3: Supported homing methods

It indicates the supported homing methods of the driver.
। Object description

Index	60E3
Name	Supported homing methods
Object code	Array
Data type	Integer8

1 Entry description

Sub-index	0×00
Description	Highest sub-index supported
Access	C
PDO mapping	No
Value range	Manufacturer-specific -12 to -1, and all 402 standard methods.
Default value	44
Units	No

The default value of other sub-indexes from $\mathbf{0 x 0 1}$ ($1^{\text {st }}$ supported homing method), 0×02 (2 ${ }^{\text {nd }}$ supported homing method) ... till 0×44 ($44^{\text {th }}$ supported homing method) is "manufacturer-specific - 12 to -1 , and all 402 standard methods."
See the chart below:

Sub-index \#	Homing method \#	Sub-index \#	Homing method \#	Sub-index \#	Homing method \#
0×01	-12	0×16	4	0×31	21
0×02	-11	0×17	5	0×32	22
0×03	-10	0×18	6	0×33	23
0×04	-9	0×19	7	0×34	24
0×05	-8	0×20	8	0×35	25
0×06	-7	0×21	9	0×36	26
0×07	-6	0×22	10	0×37	27
0×08	-5	0×23	11	0×38	28
0×09	-4	0×24	12	0×39	29
0×10	-3	0×25	13	0×40	30
0×11	-2	0×26	14	0×41	33
0×12	-1	0×27	17	0×42	34
0×13	1	0×28	18	0×43	35
0×14	2	0×29	19	0×44	37
0×15	3	0×30	20		--

Object 0x6099: Homing speeds

This object defines the configured speed used during homing, for searching the switch or encoder Index position. The unit is count/s.

1 Object description

Index	6099
Name	Homing speeds
Object code	Array
Data type	UINT32

1 Entry description

Sub-index	0×00
Description	Highest sub-index supported
Access	C
PDO mapping	No
Value range	2
Default value	2
Units	No

Sub-index	0×01
Description	Speed during search for switch
Access	RW
PDO mapping	No
Value range	UINT32
Default value	20,000
Units	count/s

Sub-index	0×02
Description	Speed during search for encoder Index
Access	RW
PDO mapping	No
Value range	UINT32
Default value	20,000
Units	count/s

Object 0x609A: Homing acceleration

This object defines the configured acceleration and also the deceleration used during homing. The value is count/ $/ \mathrm{s}^{2}$.

- Object description

Index	609 A
Name	Homing acceleration
Object code	Variable
Data type	UINT32

1 Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	UINT32
Default value	20,000
Units	count/s ${ }^{2 .}$

Object 0x3293: Hard stop current

This object defines the current strength (\% of the peak current) that the driver will consider as encountering a hard stop. The unit is percentage (\%).
It also sets a limit on the current output of the drive during homing to prevent machine damage in the event of unexpected hard stop impact.

। Object description

Index	3293
Name	Hard stop current
Object code	Variable
Data type	REAL32

1 Entry description

Sub-index	0×00
Access	RW
PDO mapping	No
Value range	$0.01 \sim 0.9 \times$ peak current
Default value	0.5
Units	percentage (\%)

Object 0x3294: Hard stop period

This object defines the time length of.
When the time duration that the drive current output exceeds hard stop current (0x3293) for a duration longer than defined by this "hard stop period" object, the driver will consider this situation as encountering a hard stop.
1 Object description

Index	3294
Name	Hard stop period
Object code	Variable
Data type	UINT16

1 Entry description
Sub-index 0×00 Access RW PDO mapping No Value range UINT 16 Default value 250 Units UINT 16

8.4 Functional Description

By choosing a homing mode, the following aspects are defined:

। The homing signal
। The direction of activation, and
। Position of the index pulse, where appropriate.

The home position and zero position will be replaced due to home offset; see previous descriptions of how home offset is used.

In the diagrams shown in the following chapters 8.5 and 8.6 , the encircled number represents the chosen homing mode. The direction of movement is also indicated.

There are $\mathbf{4}$ sources of homing signal, they are:
। Positive limit switch,
। Negative limit switch,
। Home switch, and

- Index pulse from an encoder

8.5 CiA 402 Homing Methods

8.5.1 By Limit Switch and Index Pulse

Method 1:

Home on the first index pulse after departing from the negative limit switch.

Homing process:
I Start with the negative motion unconditionally to the rising edge of the negative limit switch. Then, move in positive direction until the first index pulse is found.

Method 2:

Home on the first index pulse after departing from the positive limit switch.

Homing process:
I Start with the positive direction unconditionally to the rising edge of the positive limit switch. Then, move in negative direction until the first index pulse is found.

Method 3:

Home on first index pulse after departing from home switch.

Homing process:
I If the home switch is inactive, start with the positive direction to the rising edge of the home switch. Then, move in negative direction until the first index pulse is found.
I If the home switch is active, start with the negative direction until the first index pulse is found.

8.5.2 By Home Switch and Index Pulse

Method 4:

Home on the first index pulse after engaging home switch.

Homing process:
I If the home switch is active, start with the negative direction to the falling edge of the home switch. Then, move in positive direction until the first index pulse is found.
I If the home switch is inactive, start with the positive direction until the first index pulse is found.

Method 5:

Home on the first index pulse after departing from home switch.

Homing process:
I If the home switch is active, start with the positive direction until the first index pulse is found.
I If the home switch is inactive, start with the negative direction to the rising edge of the home switch. Then, move in positive direction until the first index pulse is found.

Method 6:

Home on the first index pulse after engaging home switch.

Homing process:
I If the home switch is active, start with the positive direction to the falling edge of the home switch. Then, move in negative direction until the first index pulse is found.
I If the home switch is inactive, start with the negative direction until the first index pulse is found.

8.5.3 By Home Switch, Index Pulse, and Limit Switch

Method 7:

Home on the first index pulse after departing from home switch while moving in negative direction.

Homing process:
I If the home switch is inactive, start with the positive motion. If the home switch is engaged, move in negative direction until the home switch is disengaged, then find the first index pulse.
I If the home switch is active, start with the negative direction until the home switch is disengaged, then continue moving in negative direction until the first index pulse is found.
I If the home switch is inactive, start with the positive motion. If the positive limit switch is engaged, move in negative direction until the home switch is engaged and then disengaged, and then move in negative direction until the first index pulse is found.

Method 8:

Home on the first index pulse after engaging home switch while moving in positive direction.

Homing process:
I If the home switch is inactive, start with positive direction until the home switch is met, then keep moving in positive direction until the first index pulse is found.
I If the home switch is active, start with negative direction until home switch is disengaged, then move in positive direction until home switch is engaged, and then find the first index pulse.
I If the home switch is inactive, start with positive direction; when the positive limit switch is engaged, move in negative direction until the home switch is engaged and disengaged, and then move in positive direction until the first index pulse is found.

Method 9:

Home on the first index pulse after engaging home switch while moving in negative direction.

Homing process:
I Start with positive direction unconditionally. If home switch is engaged, keep moving in positive direction until home switch is disengaged, then move in negative direction until home switch is engaged, and then find the first index pulse.
I Start with positive direction unconditionally. If home switch is disengaged, move in negative direction until home switch is engaged, then find the first index.
I Start with the positive motion unconditionally. If the positive limit switch is engaged, move in negative direction until home switch is engaged, then find the first index pulse.

Method 10:

Home on the first index pulse after departing from home switch while moving in positive direction.

Homing process:
I Start with positive direction unconditionally. If home switch is then engaged, keeping moving in positive direction until home switch is disengaged, then find the first index pulse.
I Start with positive direction unconditionally. If home switch is active and then disengaged, keep moving in positive direction until the first index pulse is found.
I Start with position direction unconditionally. If positive limit switch is then engaged, move in negative direction. If home switch is engaged, move in positive direction until home switch is disengaged, then find the first index pulse.

Method 11:

Home on the first index pulse after departing from home switch while moving in positive direction.

Homing process:
I If home switch is inactive, move in negative direction. If home switch is then engaged, move in positive direction until home switch is disengaged, then, find the first index pulse.
I If home switch is active, move in positive direction until home switch is disengaged, continue moving in positive direction until the first index pulse is found.
I If home switch is inactive, move in negative direction. If negative limit switch is then engaged, move in positive direction until home switch is engaged, continue moving in positive direction until home switch is disengaged, then, find the first index pulse.

Method 12:

Home on the first index pulse after engaging home switch while moving in negative direction.

Homing process:
I If home switch is active, move in positive direction. If home switch is then disengaged, move in negative direction until home switch is engaged, then, find the first index pulse.
I If home switch is inactive, move in negative direction until home switch is engaged, then, continue moving in negative direction until the first index pulse is found.
I If home switch is inactive, move in negative direction. If negative limit switch is then engaged, move in positive direction until home switch is engaged. If home switch is then disengaged, move in negative direction until home switch is engaged, then, find the first index pulse.

Method 13:

Home on the first index pulse after engaging home switch while moving in positive direction.

Homing process:
I Start with negative motion unconditionally. If home switch is then engaged, continue moving in negative direction. If home switch is then disengaged, move in positive direction until home switch is engaged, then, find the first index pulse.
I Start with negative motion unconditionally. If home switch is then disengaged, move in positive direction until home switch is engaged, then find the first index pulse.
I Start with negative motion unconditionally. If negative limit switch is then engaged, move in positive direction until home switch is engaged, then find the first index pulse.

Method 14:

Home on the first index pulse after departing home switch while moving in negative direction.

Homing process:
I Start with negative direction unconditionally. If home switch is inactive, move in negative direction. If home switch is then engaged, keep moving in negative direction until home switch is disengaged, then, find the first index pulse.
I Start with negative direction unconditionally. If home switch is then disengaged, keep moving in negative direction until the first index pulse is found.
I Start with negative direction unconditionally. If negative limit switch is then engaged, move in positive direction. If home switch is then engaged, move in negative direction until home switch is disengaged, then, find the first index pulse.

8.5.4 Method 15 to 16: Reserved.

8.5.5 By Limit Switch

Method 17:

Home on negative limit switch without index pulse.

Homing process:
I If negative limit switch is inactive, move in negative direction. If negative limit switch is then engaged, move in positive direction to locate the falling edge of the negative limit switch.
I If negative limit switch is active, move in positive direction to locate the falling edge of the negative limit switch

Method 18:

Home on positive limit switch without index pulse.

Homing process:
I If positive limit switch is inactive, move in positive direction. If positive limit switch is then engaged, move in negative direction to locate the falling edge of the positive limit switch.
I If positive limit switch is active, move in negative direction to locate the falling edge of the positive limit switch

8.5.6 By Rising/ Falling Edge of Home Switch

Method 19:

Home on falling edge of home switch without index pulse.

Homing process:
\dagger
If home switch is inactive, move in positive direction. If home switch is then engaged, move in negative direction to locate the falling edge of the home switch.
\dagger If home switch is active, move in negative direction to locate the falling edge of the home switch.

Method 20:

Home on rising edge of home switch without index pulse.

Homing process:
\dagger If home switch is inactive, move to rising edge of the home switch in positive direction.
\dagger If home switch is active, move in negative direction. If home switch is then disengaged, move to rising edge of the home switch in positive direction.

Method 21:

Home on falling edge of home switch without index pulse.

Homing process:
I If home switch is inactive, move in negative direction. If home switch is then engaged, move to falling edge of the home switch in positive direction.
I If home switch is active, move to falling edge of the home switch in positive direction.

Method 22:

Home on rising edge of home switch without index pulse.

Homing process:
I If home switch is active, move in positive direction. If home switch is then disengaged, move to rising edge of the home switch in negative direction.
I If home switch is inactive, move to rising edge of the home switch in negative direction.

8.5.7 By Home Switch and Limit Switch

Method 23:

Home on falling edge of home switch while moving in negative direction.

Homing process:
I If home switch is inactive, move in positive direction. If home switch is then engaged, move to falling edge of the home switch in negative direction.
I If home switch is active, move to falling edge of the home switch in negative direction.
I If home switch is inactive, move in positive direction. If positive limit switch is then engaged, move in negative direction. If home switch is then engaged, keeping moving to locate the falling edge of the home switch.

Method 24:

Home on rising edge of home switch while moving in positive direction.

Homing process:
I If home switch is inactive, move to rising edge of the home switch in positive direction.

I If home switch is active, move in negative direction. If home switch is then disengaged, move to rising edge of the home switch in positive direction.
I If home switch is inactive, move in positive direction. If positive limit switch is then engaged, move in negative direction until home switch is engaged, continue moving in negative direction. If home switch is then disengaged, then, move to rising edge of the home switch in positive direction.

Method 25:

Home on rising edge of home switch while moving in negative direction.

Homing process:
I If home switch is inactive, move in positive direction. If home switch is then engaged, continue moving in positive direction. If home switch is then disengaged, move to rising edge of the home switch in negative direction.
I If home switch is active, move in positive direction. If home switch is then disengaged, move to rising edge of the home switch in negative direction.
I If home switch is inactive, move in positive direction. If positive limit switch is then engaged, move to rising edge of the home switch in negative direction.

Method 26:

Home on falling edge of home switch while moving in positive direction.

Homing process:
I If home switch is inactive, move in positive direction. If home switch is then engaged, move to falling edge of the home switch in positive direction.
I If home switch is active, move to falling edge of the home switch in positive direction.
I If home switch is inactive, move in positive direction. If positive limit switch is then engaged, move in negative direction. If home switch is then engaged, move to falling edge of the home switch in positive direction.

Method 27:

Home on falling edge of home switch while moving in positive direction.

Homing process:
I If home switch is inactive, move in negative direction. If negative limit switch is then engaged, move in positive direction. If home switch is then engaged, move to falling edge of the home switch in positive direction.
I If home switch is active, move to falling edge of the home switch in positive direction.
I If home switch is inactive, move in negative direction. If home switch is then engaged, move to falling edge of the home switch in positive direction.

Method 28:

Home on rising edge of home switch while moving in negative direction.

Homing process:
I If home switch is inactive, move to rising edge of the home switch in negative direction.
I If home switch is active, move in positive direction. If home switch is then disengaged, move to rising edge of the home switch in negative direction.

I If home switch is inactive, move in negative direction. If negative limit switch is then engaged, move in positive direction until home switch is engaged, continue moving in positive direction. If home switch is then disengaged, move to rising edge of the home switch in negative direction.

Method 29:

Home on rising edge of home switch while moving in positive direction.

Homing process:
I If home switch is inactive, move in negative direction. If negative limit switch is then engaged, move to rising edge of the home switch in positive direction.
I If home switch is inactive, move in negative direction until home switch is engaged, continue moving in negative direction. If home switch is then disengaged, move to rising edge of the home switch in positive direction.
I If home switch is active, move in negative direction. If home switch is then disengaged, move to rising edge of the home switch in positive direction.

Method 30:

Home on falling edge of home switch while moving in negative direction.

Homing process:
I If home switch is inactive, move in negative direction. If negative limit switch is then engaged, move in positive direction. If home switch is then engaged, move to falling edge of the home switch in negative direction.
I If home switch is active, move to the falling edge of the home switch in negative direction.
I If home switch is inactive, move in negative direction. If home switch is then engaged, move to falling edge of the home switch in negative direction.

8.5.8 Method 31 to 32: Reserved.

8.5.9 By First Pulse

Method 33:

Home on the first pulse while moving in negative direction.

Method 34:

Home on the first pulse while moving in positive direction.

8.5.10 By Current Position

Method 35:

Home on the current position.
*Note
Method 37 = Method 35

8.6 cpc Homing Methods

8.6.1 By Hard Stop

Method -1:

Home on the point of the positive hard stop.

Homing process:
I Start with positive motion unconditionally until the positive hard stop is found.

Method -2:

Home on the point of the negative hard stop.

Homing process:
I Start with negative motion unconditionally until the negative hard stop is found.

8.6.2 By Hard Stop and Index

Method -3:

Home on the first index pulse after touching the positive hard stop.

Homing process:

I Start with positive direction unconditionally. After touching the positive hard stop, move in negative direction until the first index is found.

Method -4:

Home on the first index pulse after touching the negative hard stop.

Homing process:
I Start with negative direction unconditionally. After touching the negative hard stop, move in positive direction until the first index is located.

8.6.3 By the middle of Hard Stop

Method -5:

Find middle between forward/backward hard stop, initial direction forward.

Homing process:
I Start with positive direction unconditionally. After touching the positive hard stop, move in negative direction until touching the negative hard stop, and then home on the middle of the two hard stops (found during homing).

Method -6:

Find middle between forward/backward hard stop, initial direction backward.

Homing process:
I Start with negative direction unconditionally. After touching the negative hard stop, move in positive direction until touching the negative hard stop, and then home on the middle of the two hard stops (found during homing).

8.6.4 By the middle of Limit Switch

Method -7:

Find middle between forward/backward limit switch falling edge, initial direction forward.

Homing process:

I If negative limit switch is active, start with positive direction until the positive limit switch is engaged; then, move in negative direction to find the middle of both switches.
I If negative limit switch is inactive, start with positive direction until the positive limit switch is engaged and then move in negative direction. If negative limit switch is engaged, move in positive direction until the middle of both switches is found.

I If the positive limit switch is active, start with negative direction until the negative limit switch is engaged; then, move in positive direction to find the middle of both switches.

Method -8:

Find middle between forward/backward limit switch falling edge, initial direction backward

Homing process:
I If negative limit switch is active, start with positive direction until the positive limit switch is engaged; then, move in negative direction to find the middle of both switches.
I If negative limit switch is inactive, start with negative direction until the negative limit switch is engaged and then move in positive direction. If the positive limit switch is then engaged, move in negative direction until the middle of both switches is found.
I If the positive limit switch is active, start with negative direction until the negative limit switch is engaged; then, move in positive direction to find the middle of both switches.

8.6.5 By the middle of Home Switch

Method -9:

Find middle of home switch falling edge, initial direction forward, allow limit switch.

Homing process:
I If the home switch is inactive, start with positive direction until the home switch is engaged and disengaged, then move in negative direction until the middle of home switch is found.
I If the home switch is active, move in positive direction until the home switch is disengaged, then move in negative direction until the home switch is engaged and then disengaged. Reverse to move in positive direction and find the middle of home switch.
I If the home switch is inactive, move in positive direction. If the positive limit switch is then engaged, move in negative direction until the falling edge of the
home switch is engaged, then, move in positive direction until the middle of the home switch is found.
I If the positive limit switch is active, move in negative until the falling edge of home switch is met, then move in positive direction and find the middle of home switch.

Method -10:

Find middle of home switch falling edge, initial direction backward, allow limit switch

Homing process:
I If the negative limit switch is active, move in positive direction until the home switch is engaged and then disengaged. Then move in negative direction until the middle of the home switch is found.
I If the home switch is inactive, start with negative direction. If the negative limit switch is then engaged, move in right direction until the falling edge of
the home switch is met. Then move in negative direction to find the middle of the home switch.
I If home switch is active, move in negative direction. If the home switch is then disengaged, move in positive direction until the home switch is engaged and disengaged. Then, move in negative direction until the home switch is engaged again and find the middle of home switch.
I If the home switch is inactive, move in negative direction until the falling edge of home switch. If the home switch is then disengaged, move in positive direction until the middle of the home switch is found.

Method-11:

Find middle of home switch falling edge, initial direction forward, allow hard stop.

Homing process:
I Start with positive direction unconditionally. If home switch is inactive, keep going (and then if hard stop is met, reverse firstly) until meeting the rising and falling edge of the home switch, then reverse again to locate the middle of home switch.
I Start with positive direction unconditionally. If home switch is active, seek the positive side of home switch, then move in negative direction to meet the negative side of home switch, then reverse to find the middle of home switch.

Method -12:

Find middle of home switch falling edge, initial direction backward, allow hard stop.

Homing process:
I Start with negative direction unconditionally. If home switch is inactive, keep going (and then if hard stop is met, reverse firstly) until meeting the rising and falling edge of the home switch, then reverse again to locate the middle of home switch.
I Start with negative direction unconditionally. If home switch is active, go meet the negative side of home switch, then move in positive direction to meet the positive side of home switch, then reverse to find the middle of home switch.

9. Touch Probe Functionality

9.1 Object

Object 0x60B8: Touch probe function

This object indicates the configured function of the touch probe.

1Object descriptionIndex 60B8 Name Touch probe function Object code Variable Data type UINT16 Entry description Sub-index 0×00 Access RW PDO mapping Yes Value range UINT16 Default value 1 Units Count

See value definition below.

Value definition

Bit	Value	Description
0	0	Switch off touch probe 1
	1	Enable touch probe 1
1	0	Trigger first event
	1	Continuous
2,3	$00_{\text {b }}$	Trigger with touch probe 1 input
	01_{b}	Trigger with zero impulse signal or position encoder.
	$10^{\text {b }}$	Reserved
	11b	Reserved.
4	0	Switch off sampling at positive edge of touch probe 1
	1	Enable sampling at positive edge of touch probe 1.
5	0	Switch off sampling at negative edge of touch probe 1
	1	Enable sampling at negative edge of touch probe 1.
6,7	-	User-defined (e.g. for testing)
8	0	Switch off touch probe 2
	1	Enable touch probe 2
9	0	Trigger first event
	1	Continuous
10, 11	$00{ }_{\text {b }}$	Trigger with touch probe 2 input
	01_{b}	Trigger with zero impulse signal or position encoder
	10b	Reserved
	11_{b}	Reserved
12	0	Switch off sampling at positive edge of touch probe 2
	1	Enable sampling at positive edge of touch probe 2
13	0	Switch off sampling at negative edge of touch probe 2
	1	Enable sampling at negative edge of touch probe 2
14, 15	-	User-defined (e.g. for testing)

Object 0x60B9: Touch probe status

This object shows the status of the touch probe.

। Object description

Index	60B9
Name	Touch probe status
Object code	Variable
Data type	UINT16

। Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	UINT16
Default value	No
Units	No

See value definition below.

Value definition

Bit	Value	Description
0	0	Touch probe 1 is switched off
	1	Touch probe 1 is enabled
1	0	Touch probe 1 no positive edge value stored
	1	Touch probe 1 positive edge position stored
2	0	Touch probe 1 no negative edge value stored
	1	Touch probe 1 negative edge position stored
$3 \sim 5$	0	Reserved
6,7	-	User-defined (e.g. for testing)
8	0	Touch probe 2 is switched off
	1	Touch probe 2 is enabled
9	0	Touch probe 2 no positive edge value stored
	1	Touch probe 2 positive edge position stored
10	0	Touch probe 2 no negative edge value stored
	1	Touch probe 2 negative edge position stored
$11 \sim 13$	0	Reserved

Object 0x60BA: Touch probe 1 positive edge

This object shows the position value of the touch probe 1 at positive edge. The value is given in counts.

1 Object description

Index	60BA
Name	Touch probe 1 positive edge
Object code	Variable
Data type	INT32

। Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	INT32
Default value	No
Units	count

Object 0x60BB: Touch probe 1 negative edge

This object shows the position value of the touch probe 1 at negative edge. The value is given in counts.

1 Object description

Index	$60 B B$
Name	Touch probe 1 negative edge
Object code	Variable
Data type	INT32

। Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	INT32
Default value	No
Units	count

Object 0x60BC: Touch probe 2 positive edge

This object shows the position value of the touch probe 2 at positive edge. The value is given in counts.

1 Object description

Index	$60 B C$
Name	Touch probe 2 positive edge
Object code	Variable
Data type	INT32

। Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	INT32
Default value	No
Units	count

Object 0x60BD: Touch probe $\mathbf{2}$ negative edge

This object shows the position value of the touch probe 2 at negative edge. The value is given in counts.

1 Object description

Index	60BD
Name	Touch probe 2 negative edge
Object code	Variable
Data type	INT32

। Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	INT32
Default value	No
Units	count

9.2 Touch Probe Edge Counter for Continuous

Mode

9.2.1 General information

For continuous touch probe mode [namely, object 0x60B8, bit $1=1$ (continuous) or object 0x60B8, bit $9=1$ (continuous)], a counter per touch probe channel is incremented on each touch probe event (i.e., rising or falling edge). Hence, the control device can check how many touch probe events have happened between the control cycles.

For each touch probe and each edge, a counter (namely, 0x60D5, 0x60D6, 0x60D7 and $0 \times 60 \mathrm{D} 8$) is defined.

Please refer to the timing diagram example (ch. 9.2.2) for further explanation.

9.2.2 Timing Diagram - Example of Touch Probe Edge Counter for Continuous Mode

<Explanation of the timing diagram >

Object 0x60B8: the configured function of the touch probe.
Object $0 \times 60 \mathrm{~B} 9$: the status of the touch probe.

No. \#		Touch probe behavior
(1)	0x60B8, bit $0=1$	Enable touch probe 1
	0x60B8, bit 1, 4, 5	Configure and enable touch probe 1 positive and negative edge
(2)	Ë 0x60B9, bit $0=1$	Status "Touch probe 1 enabled" is set
(3)	External touch probe signal has positive edge	
(4)	Ë 0x60B9, bit $1=1$	Status "Touch probe 1 positive edge stored" is set
(4a)	Ë 0x60BA	Touch probe position 1 positive value is stored
(5)	External touch probe signal has negative edge	
(6)	Ë 0x60B9, bit $2=1$	Status "Touch probe 1 negative edge stored" is set
(6a)	Ë 0x60BB	Touch probe position 1 negative value is stored
(7)	0x60B8, bit $4=0$	"Sampling positive edge" is disabled
(8)	Ë 0x60B9, bit $0=0$	Status "Touch probe 1 positive edge stored" is reset
(8a)	Ë 0x60BA	Touch probe position 1 positive value is not changed
(9)	0x60B8, bit $4=1$	"Sampling positive edge" is enabled
(10)	Ë 0x60BA	Touch probe position 1 position value is still not changed
(11)	External touch probe signal has positive edge	
(12)	Ë 0x60B9, bit $1=1$	Status "Touch probe 1 positive edge stored" is set
(12a)	Ë 0x60BA	Touch probe position 1 positive value is stored
(13)	$0 \times 60 \mathrm{B8}$, bit $0=0$	Touch probe 1 is disabled
(14)	Ë 0x60B9, bit 0,1,2 = 0	Status bits are reset
(14a)	Ë 0x60BA, $0 \times 60 \mathrm{BB}$	Touch probe position 1 positive/negative value are not changed

9.2.3 Object

Object 0x60D5: Touch probe 1 positive edge counter

- This object is a continuous counter which is incremented with each positive edge (rising edge) at touch probe 1.
- This counter is only valid when the "touch probe 1 input" is enabled (i.e., $0 \times 60 \mathrm{~B} 8$, bit $0=1$).
- For single measuring, its range is 0 to 1 .

For continuous measuring, its range is an unsigned 16 -bit value with overflow.

। Object description

Index	60D5
Name	Touch probe 1 positive edge counter
Object code	Variable
Data type	UINT16

1 Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	UINT16
Default value	No
Units	No

Object 0x60D6: Touch probe 1 negative edge counter

- This object is a continuous counter which is incremented with each negative edge (falling edge) at touch probe 1.
- This counter is only valid when the "touch probe 1 input" is enabled (i.e., 0x60B8, bit $0=1$).
- For single measuring, its range is 0 to 1 .

For continuous measuring, its range is an unsigned 16 -bit value with overflow.

। Object description

Index	60D6
Name	Touch probe 1 negative edge counter
Object code	Variable
Data type	UINT16

1 Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	UINT16
Default value	No
Units	No

Object 0x60D7: Touch probe 2 positive edge counter

- This object is a continuous counter which is incremented with each positive edge (rising edge) at touch probe 2.
- This counter is only valid when the "touch probe 1 input" is enabled (i.e., $0 \times 60 B 8$, bit $0=1$).
- For single measuring, its range is 0 to 1 .

For continuous measuring, its range is an unsigned 16 -bit value with overflow.

। Object description

Index	60D7
Name	Touch probe 2 positive edge counter
Object code	Variable
Data type	UINT16

) Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	UINT16
Default value	No
Units	No

Object 0x60D8: Touch probe 2 negative edge counter

- This object is a continuous counter which is incremented with each negative edge (falling edge) at touch probe 2.
- This counter is only valid when the "touch probe 1 input" is enabled (i.e., 0x60B8, bit $0=1$).
- For single measuring, its range is 0 to 1 .

For continuous measuring, its range is an unsigned 16 -bit value with overflow.

। Object description

Index	$60 D 8$
Name	Touch probe 2 negative edge counter
Object code	Variable
Data type	UINT16

1 Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	UINT16
Default value	No
Units	No

10. Profile Velocity M ode

10.1 General Information

The profile velocity mode includes the following sub-functions:
। Demand value input via trajectory generator
। Velocity capture using the position sensor or velocity sensor
। Velocity control function with the appropriate input and output signals
। M onitoring of the profile velocity using a window function
। M onitoring of the velocity actual value using a threshold

The input parameters are:
1 Profile velocity
, Profile acceleration
। Profile deceleration
। Quick stop deceleration

10.2 Structure of Controlword and Statusword

10.2.1 Controlword of the Profile Velocity Mode.

Bit	Function
$0 \sim 3$	*See chapter 4.3.1.1 - Device Control/Controlword structure
$4 \sim 6$	Reserved
7	*See chapter 4.3.1.1 - Device Control/Controlword structure
8	Halt
$9 \sim 15$	*See chapter 4.3.1.1 - Device Control/Controlword structure

Definition of bit 8

Bit	Name	Value	Description
8	8	Halt	0
Execute or continue the motion.			

10.2.2 Statusword of the Profile Velocity Mode.

Bit	Function
$0 \sim 9$	*See chapter 4.3.2.1 - Device Control/Statusword structure
10	Target reached
11	*See chapter 4.3.2.1 - Device Control/Statusword structure
12	Zero speed
13	Reserved
$14 \sim 15$	*See chapter 4.3.2.1 - Device Control/Statusword structure

Definition of bit 10 and 12

Bit	Name	Value	Description
10	Target reached	0	Halt =0: Target not reached. Halt =1: the motor decelerates.
		1	Halt =0: Target is reached. Halt =1: the motor decelerates to 0 velocity.
	Zero speed	0	Present speed is above the velocity threshold.
	1	Present speed is less than or equal to the velocity threshold.	

10.3 Functional Description

1 The actual velocity is acquired via the position encoder.

Target reached (bit 10 in statusword)

While the difference between the target velocity and the velocity actual value is within the velocity window longer than the velocity window time, the target reached bit (bit 10) will be set to 1 .

Velocity threshold (bit 12 in statusword)
। $=0$
When the actual velocity is greater than the velocity threshold longer than the threshold time.
। $=1$
When the actual velocity is less than or equal to the velocity threshold. This situation will be regarded as the motor is not moving.

10.4 Objects

Object 0x606B: Velocity demand value

The value of velocity demand as generated by the trajectory generator.

। Object description

Index	606 B
Name	Velocity demand value
Object code	Variable
Data type	INT32

1 Entry description

Sub-index	$0 x 00$
Access	RO

PDO mapping No
Value range INT32

Default value No Units count/s

Object 0x606C: Velocity actual value

This object gives the actual velocity value acquired from the velocity sensor or the position encoder.

1 Object description

Index	$606 C$
Name	Velocity actual value
Object code	Variable
Data type	INT32

। Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	INT32
Default value	0
Units	count/s

Object 0x606D: Velocity window

This object shows the configured velocity window.

। Object description

Index	606 C
Name	Velocity actual value
Object code	Variable
Data type	UINT16

। Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	UINT16
Default value	0
Units	count/s

Object 0x606E: Velocity window time

This object shows the configured velocity window time in ms.

। Object description

Index	$606 E$
Name	Velocity actual value
Object code	Variable
Data type	UINT16

। Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	UINT16
Default value	0
Units	ms

Object 0x606F: Velocity threshold

This object shows the configured velocity threshold.

। Object description

Index	606 F
Name	Velocity threshold
Object code	Variable
Data type	UINT16

। Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	UINT16
Default value	0
Units	count/s

Object 0x6070: Velocity threshold time

This object shows the configured velocity threshold time.
When the present speed is less than or equal to the velocity threshold (0x606F) longer than the velocity threshold time (0x6070), the motor will be regarded as stationary.

। Object description

Index	6070
Name	Velocity threshold time
Object code	Variable
Data type	UINT16

1 Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	UINT16
Default value	0
Units	ms

11. Profile Torque M ode

11.1 General Information

The profile torque mode allows a host (external) control system (i.e., closed-loop speed controller, open-loop transmission force controller) to transmit the target torque value (0×6071), which is processed through the trajectory generator. The torque slope parameter is required.

When the torque command is changed, the motor torque ramps to the new value at the rate programmed in "torque slope (index 0x6087)." If the control device switches the controlword bit 8 (Halt) from 0 to 1, the driver ramps the effort output to zero; If bit 8 is set from 1 to 0 , the driver ramps the effort output up to the target torque.

All the definitions refer to the rotary motor. For linear motors, all the "torque" objects refer to a "force" instead.

Please note that the current limits (including continuous current and peak current) need to suit the motor rated current.

The inputs to the torque control are as follows:
Target torque (0x6071)
1 Torque slope (0x6087)
Controlword
M ax current (0x6073)
M otor rated torque (0x6076)
M otor rated current (0x6075)

11.2 Structure of Controlword and Statusword

11.2.1 Controlword of the Profile Torque Mode

Bit	Function
$0 \sim 3$	*See chapter 4.3.1.1 - Device Control/Controlword structure
$4 \sim 6$	Reserved
7	*See chapter 4.3.1.1 - Device Control/Controlword structure
8	Halt
$9 \sim 15$	*See chapter 4.3.1.1 - Device Control/Controlword structure

Definition of bit 8

Bit	Name	Value	Description
8	Halt	0	Execute or continue the motion.

11.2.2 Statusword of the Profile Torque Mode

Bit	Function
$0 \sim 9$	*See chapter 4.3.2.1 - Device Control/Statusword structure
10	Target reached
11	*See chapter 4.3.2.1 - Device Control/Statusword structure
$12 \sim 13$	Reserved
$14 \sim 15$	*See chapter 4.3.2.1 - Device Control/Statusword structure

। Definition of bit 10

Bit	Name	Value	Description
10		0	Halt =0: Target torque not reached. Halt =1: the motor decelerates.
	Target reached	1	Halt =0: Target torque is reached. Halt =1: the motor decelerates to 0 velocity.

11.3 Objects

Object 0x6071: Target torque

This parameter is the input value for the torque controller in profile torque mode.

। Object description

Index	6071
Name	Target torque
Object code	Variable
Data type	UINT16

1 Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	UINT16
Default value	0
Units	0.1%

Object 0x6073: Max current

The motor peak current.
This value shows the maximum permissible torque creating current in the motor.

1 Object description

Index	6073
Name	Max current
Object code	Variable
Data type	UINT16

। Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	UINT16
Default value	0
Units	0.1%

Object 0x6074: Torque demand

This object provides the output value of the trajectory generator.

1 Object description

Index	6074
Name	Torque demand
Object code	Variable
Data type	UINT16

। Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	INT16
Default value	None
Units	0.1%

Object 0x6075: M otor rated current

The motor continuous current.
This value is acquired from the motor name-plate. All relative current data refers to this value.
The unit is in mA.

। Object description

Index	6075
Name	M otor rated current
Object code	Variable
Data type	UINT32

1 Entry description

Sub-index	0×00
Access	RW
PDO mapping	No
Value range	UINT32
Default value	0
Units	mA

Object 0x6076: Motor rated torque

This value is acquired from the motor name-plate. All relative torque data refer to this value.

Note:

For linear motors, the name of this object is not changed, but the motor rated force is entered in multiples of mN (milli Newton).
1 Object description

Index	6076
Name	Motor rated torque
Object code	Variable
Data type	UINT32

1 Entry description

Sub-index	0×00
Access	RW
PDO mapping	No
Value range	UINT32
Default value	0
Units	mNm (milli Newton metre)

Object 0x6077: Torque actual value

This value shows the actual value of the torque. It corresponds to the instantaneous torque in the motor.

Note - regarding object 0x6077 (Torque actual value) and 0x6078 (Current actual value)

1. The cpc drive assumes 100% current $=100 \%$ torque.
2. The cpc drive uses object 0×6078. Nevertheless, the value of 0×6077 and 0×6078 is the same.

। Object description

Index	6077
Name	Torque actual value
Object code	Variable
Data type	INT16

I Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	INT16
Default value	0
Units	0.1%

Object 0x6078: Current actual value

This object shows the actual value of the current. It corresponds to the current in the motor.

Note - regarding object 0x6077 (Torque actual value) and 0x6078 (Current actual value)

1. The cpc drive assumes 100% current $=100 \%$ torque.
2. The cpc drive uses object 0×6078. Nevertheless, the value of 0×6077 and 0×6078 is the same.

। Object description

Index	6078
Name	Current actual value
Object code	Variable
Data type	INT16

। Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	INT16
Default value	0
Units	0.1%

Object 0x6079: DC link circuit voltage

This object shows the DC link circuit voltage at the driver immediately.

। Object description

Index	6079
Name	DC link circuit voltage
Object code	Variable
Data type	UINT32

। Entry description

Sub-index	0×00
Access	RO
PDO mapping	No
Value range	UINT32
Default value	0
Units	mV

Object 0x6087: Torque slope

This object describes the rate of change of torque in units of per thousand of rated torque per second.

1 Object description

Index	6087
Name	Torque slope
Object code	Variable
Data type	UINT32

। Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	UINT32
Default value	100,000
Units	$0.1 \% / \mathrm{s}$

12. Cyclic Synchronous Position Mode

12.1 General Information

The feature of cyclic synchronous position mode (csp mode) is that the trajectory generator is located in the control device, not in the driver.
The overall structure of csp mode is as follows:

〈Overview of cyclic synchronous position mode>

The control device provides the target position ($0 \times 607 \mathrm{~A}$, which is interpreted as absolute value in this mode) to the driver and optionally, additive velocity offset as well as torque offset to allow for velocity and/or torque feedforward control.

। The driver executes the control functions (i.e., position control, velocity control, and torque control) and gives the control device the actual values (i.e., actual values of position, velocity, and torque) measured by sensors.
ÿ The driver external control function:
The performance of the control function is influenced by control parameters (e.g., limit functions) which are externally applicable.

12.2 Functional Description

Inputs to the drive's control function:

Target position (0x607A)

Position offset (0x60B0)

(optional; to be added to the target position to allow two examples to set up the position).
Velocity offset (6x60B1)
(optional; used for feedforward control)
Torque offset (0x60B2)
(optional; used for feedforward control)
(In cascaded structure where position control is followed by a velocity or torque control) The output of the position control loop is used as an input for a further calculation in the driver.
Position Limit functions, such as Position range limit (0X607B) and Software position limit (0X607D).
Following error window (0x6065)
Following error time out (0x6066)
Quick stop deceleration (0x6085)
Quick stop option code (0x605A)
Interpolation time period ($0 \times 60 \mathrm{C} 2$)
Defines the time duration between two updates of the target position and/or additive position and is used for intercycle interpolation.
Position range limit (0x607B)
) Software position limit (0x607D)
1 Max motor speed (0x6080)
। Max current (0x6073)
Motor rated current (0x6075)

Outputs of the drive's control function:
Position actual value (0×6064)
It is used as a compulsory output to the control device.
Velocity actual value (0x606C)
Torque actual value (0×6077)
Following error actual value (0x60F4)
It can be used as an extra parameter.

12.3 Structure of Controlword and Statusword

The csp mode does not use mode-specific controlword bit.
It uses 2 bits in statusword for mode-specific purpose.

12.3.1 Statusword of the Cyclic Synchronous Position Mode

Bit	Function
$0 \sim 9$	*See chapter 4.3.2.1 - Device Control/Statusword structure
10	Reserved
11	*See chapter 4.3.2.1 - Device Control/Statusword structure
12	Drive follows the command value.
13	Following error
$14 \sim 15$	*See chapter 4.3.2.1 - Device Control/Statusword structure

। Definition of bit 12, and 13

Bit	Name	Value	Description
12		Drive follows the command value.	0
	1	The driver doesn't follow the command value - "Target position" is ignored.	
13	Following error	"Target position" is used as input to the position control loop.	
	1	Fo following error.	

12.4 Object

Object 0x60B0: Position offset

This object shows the value of the position offset.

। Object description

Index	60B0
Name	Position offset
Object code	Variable
Data type	Integer32

1 Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	INT32
Default value	0
Units	count

Object 0x60B1: Velocity offset

This object shows the offset of the target position.

। Object description

Index	$60 B 1$
Name	Velocity offset
Object code	Variable
Data type	INT32

। Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	Integer32
Default value	0
Units	count

Object 0x60B2: Torque offset

This object provides the offset for torque value.

। Object description

Index	$60 B 2$
Name	Torque offset
Object code	Variable
Data type	Integer16

। Entry description

Sub-index	0×00
Access	RW
PDO mapping	Yes
Value range	INT16
Default value	0
Units	0.1%

13. Cyclic Synchronous Velocity Mode

13.1 General Information

The feature of cyclic synchronous velocity mode (csv mode) is that the trajectory generator is in the control device, not in the driver.
The overall structure of csv mode is as follows:

<Overview of cyclic synchronous velocity mode>

Max motor speed (0x6080)

1 The control device provides the target velocity (0x60FF) to the driver and optionally, additive velocity offset as well as torque offset to allow a second source for velocity and/or torque feedforward.

The driver executes the control functions (i.e., velocity control and torque control) and gives the control device the actual values (i.e., actual values of position, velocity, and torque) measured by sensors.
\ddot{y} Users can close the position control loop over the communication system if they wish.

ÿ The driver external control function:
The performance of the control function is influenced by control parameters (e.g., limit functions) which are externally applicable.

1 The csv mode includes the following sub-functions:
ÿ Demand value input;
y Velocity capture using position sensor or velocity sensor;
\ddot{y} Velocity control function with appropriate input and output signals;
\ddot{y} Limitation of torque demand - based on the user-configured max motor speed, rated current and peak current.

13.2 Functional Description

Inputs to the drive's control function

। Target velocity (0x60FF)
Velocity offset (6x60B1)
(optional; to be added to the target velocity to allow two examples to set up the velocity).
Torque offset (0x60B2)
(optional; used for feedforward control)
(In cascaded structure where a velocity control is followed by a torque control)
The output of the velocity control loop is used as an input for a further calculation in the driver
Quick stop deceleration (0x6085)
Quick stop option code (0x605A)
Interpolation time period (0x60C2)
Defines the time duration between two updates of the target velocity and/or additive velocity and is used for intercycle interpolation.
Max motor speed (0x6080)
Max current (0x6073)
Motor rated current (0x6075)

Outputs of the drive's control function

Velocity actual value ($0 \times 606 \mathrm{C}$)
It is used as a compulsory output to the control device.
Torque actual value (0x6077)

13.3 Structure of Controlword and Statusword

The csv mode doesn’t use mode-specific controlword bit. It uses some bits in statusword for mode-specific purpose.

13.3.1 Statusword of the Cyclic Synchronous Velocity Mode

Bit	Function
$0 \sim 9$	*See chapter 4.3.2.1 - Device Control/Statusword structure
10	Reserved
11	*See chapter 4.3.2.1 - Device Control/Statusword structure
12	Drive follows the command value.
13	Reserved
$14 \sim 15$	*See chapter 4.3.2.1 - Device Control/Statusword structure

1 Definition of bit 12

Bit	Name	Value	Description
12		0	Drive follows the command value.
		1	The driver doesn't follow the command valiver follows the command value - "Target velocity" is used as input to the velocity control loop.

14. Cyclic Synchronous Torque Mode

14.1 General Information

The feature of cyclic synchronous torque mode (cst mode) is that the trajectory generator is in the control device, not in the driver.
The overall structure of cst mode is as follows:

<Overview of cyclic synchronous torque mode>

M ax current (0x6073)
 M otor rated current (0x6075)

1 The control device provides the target torque (0×6071) to the driver and optionally, additive torque offset to allow two examples to set up the torque.

। The driver executes the control functions (i.e., torque control) and gives the control device the actual values (i.e., actual values of position, velocity, and torque) measured by sensors.

। The cst mode includes the following sub-functions:
ÿ Demand value input;
ÿ Torque capture;
\ddot{y} Torque control function with appropriate input and output signals;
\ddot{y} Limitation of torque demand - based on the user-configured rated current and peak current.

14.2 Functional Description

Inputs to the drive's control function
। Target torque (0x6071)
) Torque offset (6x60B2)
(optional; to be added to the target torque to allow two examples to set up the torque).
1 Interpolation time period ($0 \times 60 \mathrm{C} 2$)
Defines the time duration between two updates of the target velocity and/or additive velocity and is used for intercycle interpolation.
Max current (0x6073)
Motor rated current (0x6075)

Outputs of the drive's control function
1 Torque actual value (0×6077)
It is used as a compulsory output to the control device.

14.3 Structure of Controlword and Statusword

The csv mode doesn’t use mode-specific controlword bit.
It uses some bits in statusword for mode-specific purpose.

14.3.1 Statusword of the Cyclic Synchronous Torque Mode

Bit	Function
$0 \sim 9$	*See chapter 4.3.2.1 - Device Control/Statusword structure
10	Reserved
11	*See chapter 4.3.2.1 - Device Control/Statusword structure
12	Drive follows the command value.
13	Reserved
$14 \sim 15$	*See chapter 4.3.2.1 - Device Control/Statusword structure

1 Definition of bit 12

Bit	Name	Value	Description
		0	The driver doesn't follow the command value - "Target velocity" is ignored.
12	Drive follows the command value.	1	The driver follows the command value - ""Target velocity" is used as input to the velocity control loop.

15. Optional application FE

The objects described in this chapter are used for the optional generic input/output functional elements.

Object 0x60FD: Digital inputs

This object shows the logical input levels.

। Bit definition

*: Bit 3 (interlock) shows the status of the digital input pin which is defined as "Quick Stop"; if quick stop signal is high, then bit 3 (interlock) signal is high.

Object description

Index	60FD
Name	Digital inputs
Object code	Variable
Data type	UINT32

Entry description

Sub-index	0×00
Access	RO
PDO mapping	Yes
Value range	UINT32
Default value	No
Units	No

Value definition

Field	Value	Definition
Negative limit switch	0	Negative limit switch is not reached
	1	Negative limit switch is reached
Positive limit switch	0	Positive limit switch is not reached
	1	Positive limit switch is reached
	0	Home switch is not reached
	1	Home switch is reached
Interlock	0	Interlock is not activated
	1	Interlock is activated
Manufacturer-specific	0	Reserved
	0	Function is not activated
	1	Function is activated

Object 0x60FE: Digital outputs

This object shows the logical output levels.

। Bit definition

1 Object description

Index	60FE
Name	Digital output
Object code	Array
Data type	UINT32

Entry description

Sub-index	0×00
Description	Highest sub-index supported
Access	C
PDO mapping	No
Value range	0×01
Default value	1
Units	No

Sub-index	0×01
Description	Physical outputs
Access	RW
PDO mapping	No
Value range	UINT32
Default value	00000000 h
Units	No

Value definition

Field	Value	Definition
Set brake*	0	Brake is deactivated
	1	Brake is activated.
Reserved	0×00	Reserved
Manufacturer-specific	0	Function is not activated
	1	Function is activated

*: This bit is read-only, it shows the status of the brake.

16. Device information

Object 0x67FE: Version number

This object indicates the version number of the CiA ${ }^{\otimes} 402$ DSP-Part 2 that is carried out in the device.
Currently cpc applies the version number 3.0.0.

। Bit definition

Bit	Function
$0 \sim 7$	Sub version number
$8 \sim 15$	Minor version no.
$16 \sim 23$	Major version no.
$24 \sim 31$	Reserved

। Object description

Index	67FE
Name	Version number
Object code	Variable
Data type	UINT32

1 Entry description

Sub-index	0×00
Access	C
PDO mapping	No
Value range	No
Default value	3
Units	No

Field	Value	Definition
M ajor version no.	3	M ajor version number for this profile specification version.
Minor version no.	0	M inor version number for this profile specification version.
Sub version no.	0	Sub-version number for this profile specification version.
Reserved	0	Reserved

End of Page

[^0]: *note:
 Automatically transit to the "operation enabled" state after performing the "switched on" state functionality.

